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Abstract

Kernel density estimation, a method to produce estimators of an unknown probability density f,
is introduced over the real numbers. Some classical upper bounds on the error of these estimators
are derived, assuming f lies in some regularity space. Recent work in the field has developed kernel
density estimation over a broad class of metric spaces. We consider a measure metric space satisfying
a volume doubling condition, which admits a non-negative self-adjoint operator whose heat kernels
enjoy Gaussian regularity. This framework includes many natural spaces such as Euclidean space,
spheres, balls, and a wide class of Riemannian manifolds. In this setting, analagous upper bound to
those on Euclidean space are derived.
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1 Introduction

In the modern world, science has become largely based on statistical methods, due to the endless stream of
data provided by ever-improving technology. In astronomy, new telescopes and techniques are detecting
a growing number of astrophysical phenomena, such as new galaxies, supernovae and black hole mergers.
In earth science, both ground-based and orbital sensors monitor global events such as earthquakes and
weather patterns. Medicine uses scans, such as magnetic resonance imaging and x-rays, to study the
interior of our bodies.

Many datasets can be understood as many independent realisations of a random variable X, which is
distributed according to an unknown probability density f over some geometric space M. The distances
to newly discovered galaxies are distributed over the positive reals. Other data, such as the direction to
a detected supernova and the locations of earthquakes, are distributed over the sphere. In other fields
such as signal processing and medicine, the data may be interpreted over more obscure geometric spaces.

This leads to the problem of density estimation. Given a random sample (X7, -, X,,) of a random
variable with pdf f, we wish to produce an estimator of f, that is a measurable function f tMPXM = R,
which depends on the data and the variable upon which f depends.

One widely used method for tackling this problem is kernel density estimation. This was suggested
first by Rosenblatt (1956) [13] and developed further by Parzen (1962) [12]. One of the first works in
attaining optimal convergence rates of these estimators was done by Bretagnolle and Huber (1979) [1],
under the assumption that f: R — R lies in a Sobolev space. Work over more general regularity spaces
has also been performed, for example Besov spaces over R” in Kerkyacharian and Picard (1992) [10]. A
thorough introduction to the subject can be found in the now standard textbook Tsybakov (2009) [14].

However, many data sets are not distributed over Euclidean space, and each time a new setting
is introduced, the entire machinery of kernel density estimation must be built again for that specific
space. The field would benefit greatly from unifying the approach over a broad class of geometric
spaces. Work in this direction has been undertaken by Coulhon et al. (2012) [5] and Kerkyacharian
et al. (2015) [11], allowing us to consider kernel density estimation over many metric measure spaces
equipped with a Laplacian-like operator. This modern framework hosts many examples which were of
established interest, such as Euclidean space, spheres, balls, and intervals, and includes a great many
more, such as all Riemannian manifolds of non-negative Ricci curvature, equipped with their Laplace or
Laplace-Beltrami operator.

Building on this work, upper bounds on the convergence rates of these kernel density estimators over
Holder and Sobolev regularity spaces have been derived in Cleanthous et al. (2022) [3] and Cleanthous
et al. (2025) [1] respectively. These rates match those known to be optimal over Euclidean space and
the sphere. One of the goals of the thesis is to build up to these results.

We now present a roadmap for this thesis. The next two sections will follow the outline of the first
chapter of [14]. In Section 2, we introduce the procedure of kernel density estimation on R. Kernels,
bandwidths and kernel density estimators are discussed, as well as the risks used to measure the accuracy
of the estimators. Section 3 is dedicated to deriving some classical results on the convergence rates of
kernel density estimators on R, specifically when f lies in a Holder, Nikol’skii or Sobolev regularity space.

We then move to the modern setting, preparing to perform kernel density estimation on a wide range
of geometric spaces. In Section 4, the geometric aspect is explored: we assume a metric measure space
(M, p, ) which has some minimal geometric structure, such as a volume-doubling condition. Section
5 is dedicated to outlining a minimal background in the powerful spectral theory necessary. There,
we assume the space admits an essentially self-adjoint operator L, to be thought of as similar to the
Laplacian of R™, with Gaussian-like heat kernels. At the end of these sections, we discuss some examples
of spaces satisfying the assumptions.

The background of the modern setting builds up to Section 6, where we will then outline recent
developments on such spaces from [3] and [4]. This will rely on the Assumptions I and II from Sections
4 and 5 respectively, as well as machinery built in [5] and [11]. Upper bounds analogous to each of those
presented in Section 3 are obtained, and so these sections share the same structure.

Notation: We denote by N, R, R, the sets of positive integers, reals and non-negative reals respec-
tively. If 7 € N, the class of differentiable functions on R with continuous derivatives up to order 7 will
be stated as C7(R). For s > 0, we will denote by |s]| the greatest integer strictly less than s.



2 Kernel density estimation

Let (X1, -, X,) be independent random variables identically distributed on R according to an unknown
probability density function (pdf) f : R — [0,00). Our goal is to construct some estimator foof f, a
measurable function from R™ x R — R, based on the n observations. If we were to assume f could be
described by finitely many parameters, such as a Gaussian being described by its mean and variance, this
would simplify to choosing those parameters to best fit the observation. Here, we do not assume that
f takes such a form, but rather that f belongs to some vast regularity space such as a Sobolev space.
Kernel density estimation is one approach to this problem without relying on a parameterisation.

2.1 Kernels and bandwidths

In Figure 1, we plot an example probability density f and some data sampled from it. We see that the ar-
eas where the data is concentrated typically correspond to peaks of f, and hope that these concentrations
will help us to estimate the pdf.
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Figure 1: We use f = 0.6N(3,0.8) + 0.4N(7,1.2) as an example probability density
function, where N(u, o) is a normal distribution of mean p and standard deviation o.
The black circles are n = 50 points sampled from f, referred to as the data X. These are
seen to be most concentrated around x = 3 and x = 7, corresponding to the peaks of f.

Given a probability density f, the corresponding cumulative distribution function (cdf) is defined as

Pla) = / F(£)dt.

This measures how much of the mass of the pdf lies to the left of each z € R. Only having access to
the data, we can estimate the cdf as the fraction of the observations X; that lie to the left of z. Making
use of the indicator function I(-), which is one when its argument is true and vanishes otherwise, this
estimator can be written as

Ep(x) = % i[(xi < z).

By the strong law of large numbers, we have F),(z) ———» F(z) almost surely for every x € R, so this is

a consistent estimator of the cdf. In Figure 2 we plot a cdf F' and its estimator F,.



Cumulative distribution

Figure 2: Using the same example pdf f and data X from Figure 1, we plot the cdf F
and its estimator F},. The estimator is a step function, increasing by 1/n at each point
X; in the dataset.

Now we use this to estimate the pdf. Clearly f(x) = F’(z), by the Fundamental Theorem of Calculus.
So, one obvious approach is to estimate f by the derivative of the estimator E,. However, F, is a step-
function; the derivative is zero everywhere it exists. In its place, we use a symmetric discrete derivative.
Choosing some h > 0, which is called the bandwidth, the Rosenblatt estimator is defined as

E,(z+h)—F,(x— h).

iR
x) =
n,h( ) 2h
This estimator is plotted in Figure 3. The choice of bandwidth is important and we will return to it.
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Figure 3: Using the example pdf f and data X from Figure 1, we plot the Rosenblatt
estimator f,  against f. The bandwidth used is A = 0.95. The estimator is seen to
mimic the structure of the pdf, exhibiting two distinct peaks.



Let us now rewrite this estimator to gain some intuition for how it works. Notice first that
| Xi —
IX;<z+h)—I(X;<z—h)=Iza—h<X;,<z+h)=1 Tgl .

This allows us to express the estimator as
1 n
Tla) = = 3 Kn(X: - ),
i=1

1
where we have define u) = =I(Ju| <1) and Kp(u) := h~ u/h). We ca the rectangular kernel,
h have defined K 2] 1 d K h~'K(u/h). We call K th lar k 1

and it is plotted in Figure 4. K}, can be understood as an adaptation of K which is scaled horizontally
(interior 1/h) and vertically (exterior 1/h), with [ Kj(u)du = [ K(u)du=1. The Rosenblatt estimator
can then be understood as placing a copy of the function Kj centred at each observation X;, and then
taking the average of these n functions. Examining the plot of K, we may interpret this as attributing
a region of high probability around each data-point X;. Hopefully this seems an intuitive approach to
estimating the probability density.

Of course, there are many ways to distribute this probability. Any function K : R — R such that
f K(u)du =1 can be used, and is called a kernel. Then, for some chice of bandwidth h > 0, we again
denote Kj,(u) = h~'K(u/h) and define the associated kernel density estimator (kde) as

fon(x) = % > Ku(X; — ).
i=1

This is often referred to as a Parzen-Rosenblatt estimator, named after Rosenblatt who suggested the
method in 1956 [13], and Parzen who developed it further in 1962 [12]. The word kernel comes from
German, meaning “core” or “the most important part”. This name is fitting as the kernel K contains
all the information of the kde.

It can be noticed by the substitution u = (X;—)/h that [ fop(z)dz = [ K,(X;—z)de = [ K(u) du.
Thus the benefit of K integrating to unity is that fn’h also does. Then, if the kernel is chosen to be
non-negative, the kde is also a probability density. However, we do not require this to be the case. This
is discussed further in Section 2.2, along with further assumptions on the kernels. Typically, the kernel
is chosen to be symmetric and localised about the origin. Some examples of commonly used kernels are:

1
1. the rectangular kernel, K(u) = 5[(\u| <1),
2. the triangular kernel, K(u) = (Jul = D)I(Ju] < 1),
3
3. the Epanechnikov kernel, K(u) = i(l —u?)I(|Ju| < 1),
15
4. the biweight kernel, K(u) = 1—6(1 —uH)?I(jul < 1),
1
5. the Gaussian kernel kernel, K(u) = — exp(—u?/2),
(1) = = exp(-12/2)
3
6. and fourth-order kernels, such as K(u) = §(3 —5u?)I(Ju| < 1).

These kernels are plotted in Figure 4. All but the gaussian are compactly supported on [—1, 1], and all
but the fourth order kernel are non-negative. The Epanechnikov kernel is a cutoff parabola, and the
biweight is similar but differentiable at -1 and 1.

Let us now return to the concept of the bandwidth. It can be seen that K} becomes more localised as
h decreases. For example, with the Guassian kernel K, the bandwidth is precisely the standard deviation
of Kj. Then, as h decreases, we expect K} to become sharply peaked about the origin. The estimator
fn’h will inherit these peaks about each observation X;. On the other hand, a large value of h will cause
the various copies of K} to overlap and blur the estimator. These effects are illustrated in Figure 5.

It is up to us to choose some h within these extremes. The best value for & may depend on n. That
is, we will need the bandwidth to not be a value, but a sequence h = h,,. The size and rate of decay of
this sequence is to be chosen by us to minimise the error of the kernel density estimator.
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Figure 4: Plots of some common kernels K (u) over u.
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Figure 5: n = 1000 points are sampled from the probability density f from Figure 1.
Using the Gaussian kernel, we plot the kernel density estimator fnh(x) over z € [0, 10] for
3 values of the bandwidth h. Top left: The pdf f(z) is plotted for reference. Top right:
h = 0.3. Displays two distinct peaks, in good agreement with the true density. Bottom
left: h = 0.03. Noisy and overfit to the data, peaking sharply around observations.
Bottom right: h = 3. Too spread out, and blind to the local structure of f.



2.2 Risks

By choosing different kernels K and bandwidths h, a wide variety of kernel density estimators fn,h can
be constructed. Some are clearly better than others at estimating the probability density f. In this
section we will collect some ways to quantify the accuracy of an estimator f . We drop the subscripts
n, h to avoid clutter, and because these are true for any estimators f of f.

Before proceeding to define these risks, we lay down some information on integration. In this section
and the next, all integrals are performed with respect to the Lebesgue measure A\, and we write it as
usual [ g(x)dz. Integrals without a specified domain are understood to be over the entirety of R.

Again we let X;, 1 < i < n, be iid random variables sampled from a probability density function f.
Suppose ¢ : R — R is a function that may depend on each X;. The expected value of g at x € R,
written E[g(z)], is defined as

Elg(z)]:= [ --- T, L1, " ,Tp flz)dx; | . 2.1
l9()] / /g< ><E(> ) (2.1)

This has all the properties we know of the expectation value: it is linear, if g is a function that is

independent of each X; then it obeys E[g(z)] = g(x), and in particular E [E [g(z)]] = E [g(x)] for every g.
We will make use of a very important class of functions, the LP spaces. To define these, we first need

the p-norms [|-|| . Let g: R — C be a measurable function. For 1 < p < oo the p-norms are defined as

ol = ( | |g<x>|pdx)1/p.

In the case p = oo, it is defined as the least upper bound of |g],
9]l :=inf { M € Ry | |g(x)| < M for \-almost every z € R} .
Then, for 1 < p < oo the LP spaces are defined as
LP = LP(R,\) :={g: R — C | g measurable and ||g||, < oo}/ ~,

where ~ is the equivalence relation h ~ g when h(z) = g(x) for A-almost every z € R. | - ||, is a norm
on LP, called the p-norm of g, and with it L? is a Banach space. We can now define our risks.

Definition 2.1. Suppose f is an estimator of f. Then we define

(i) the Mean Squared Error
MSE(z) == E [(f(x) - f(@))?]; (2:2)

(ii) the Mean Integrated Square Error
MISE := E / (f(z) = f(z))*d; (2.3)
(#ii) and, for 1 <p < oo, the LP Risk
. P
R, =E Hf - pr. (2.4)

Look for a moment at the MISE, and we can find the relationship between these risks. First, notice
the integrand is positive. Then, Tonelli’s theorem tells us we can swap the order of integration,

MISE = / E [( fla) - f(x))ﬂ de = / MSE(z) dz. (2.5)

Because they allow us to swap integrals as above, Tonelli’s theorem will be among our most frequently
used tools. Secondly, we can see that the LP risk is just the generalisation of the Mean Integrated Squared
Error to other values of p,

MISE:E/(f(x)ff(m))de:IEHffsz ~ Ry. (2.6)



The Mean Squared Error is a pointwise measurement of the error, and is used to study the Holder
spaces. On the other hand, the L? risks are global measurements, and will be employed to study subsets
of the L? space, specifically the Nikol’skii and Sobolev spaces. However, working on all LP spaces proves
cumbersome, especially in the range 1 < p < 2. We shall focus on the special case p = 2. There, the L?
risk will be used, which we saw is the Mean Integrated Squared Error.

We are now ready to outline our goal. Let R be one of the risks defined above. As n grows to infinity,
we would expect our estimator fn,h to better approximate f, and we hope the risk R would approach
zero. Of course, without having access to f, we cannot compute the R, though we can bound it. In
particular, we hope there are constants R > 0, called the convergence rate, and ¢ > 0 independent of
n such that R < en™* for every n € N.

In our problem, we suppose that f lies in some regularity space F. It is to be expected that some
choices of kernel K and bandwidths h lead to faster convergence. Our goal is to find some conditions
on the kernel and bandwidth to obtain some convergence rate over the regularity space F. That is, to
maximise the R > 0 such that there exists a constant ¢ > 0, that may depend on K, h and the nature of
IF, such that for every n € N

supR < en B,

feF
This allows us to bound the risk without knowing what f is, only knowing what space it belongs to. In
this work, we are not at all interested in the value of ¢, and will not take much care to optimise its value.
We are only interested in attaining as fast a rate R as possible.

2.3 Bias and variance

We have established that our aim is to bound the risks defined in the previous section. In this section we
define the bias and variance of the kernel density estimator, and use them to decompose the MSE and
MISE into two terms. This is the most common method to estimate these errors. Unfortunately, the LP
risks do not have such a nice decomposition, and will be dealt with separately when the time comes.

Definition 2.2. Suppose f is an estimator of f. Then we define
(i) the bias b(x)
b(z) = E | f(@)] - f(@),
(ii) and the variance o?(x)

e = | () -2 [f()]) ]

Typically in kernel density estimation, as the bandwidth h decreases, the bias decreases while the
variance increase. This is known as the bias-variance trade-off. Estimators with large bias, variance are
then oversmooothed, undersmoothed respectively. We shall see that the bias depends heavily on the
regularity enjoyed by f, and the variance not so much.

The Mean Squared Error and Mean Integrated Squared Error have very well known decompositions
in terms of the bias and variance. Because of this, every proof on bounds of the MSE and MISE will be
split into two parts: estimating the bias, and estimating the variance.

Proposition 2.3. Suppose f is an estimator of f. Then

MSE = ¢* + b*, and (2.7)
MISE = /a“'(x) dx + / b*(x) da. (2.8)

Proof. Insert Ef —Ef into (f — f)? to split it into three terms. Note that Ef — f is independent of each

X;, and E [f — Eﬂ = 0, so when we take the expectation, the central term vanishes, leaving

MSE:E[(f—f)Q} :E{(f—]Ef)z} +2E [f—IEf} (Ef—f) + (]Ef—f)2:02+b2.

The expression for the Mean Integrated Squared Error follows from this and (2.5). O



3 Classical results on R

The purpose of this section is to derive upper bounds on the Mean Squared Error and Mean Integrated
Squared Error under certain regularity assumptions. Specifically, we follow Chapter 1 of [14], aiming to
prove Theorems 1.1, 1.2 and 1.3. Some results under the LP risks will also be stated.

3.1 Regularity spaces of interest

We have discussed that we do not wish to assume the probability density f has any particular form,
but rather we assume f is in some sense “smooth”. In our study, we will focus on three examples of
regularity spaces: Holder, Nikol’skii and Sobolev. Each has a parameter s > 0. We take £ = |s] to be
the greatest integer strictly less than s. In particular, if s € N, then £ = |s| = s — 1.

Definition 3.1. Let s > 0, £ = [s], and 1 < p < co. An {-times differentiable function f : R — R
belongs to

(i) the Holder space, H®, if

11l := Il fll o + sup < 005 (3.1)

sty ly—a

(i) the Nikol’skii space, N, if

1O +0) - 0@ ar] "

s 1= + su < 003 3.2
1 llnrs := I, Sup i (3.2)
11) and for s € N, the Sobolev space, ;2 1s absolutely continuous an
jii) and f N, the Sobol Ws,if f) is absolutel j d
1Fllwg = 111l +[| 1] < oe. (3.3)

The Holder condition is a mostly a local one, affecting the deviation of the function in a neighbourhood
around a point, though it does require the function to be globally bounded. In the case that s is an
integer, the finiteness of the second term is a Lipschitz condition on f(*). Any smooth probability density,
such as our example f from Figure 1, is a member of H® for every s > 0.

The Nikol’skii and Sobolev conditions are global, concerning integrals over the whole space. In the
case that s is an integer, we have Wy C N;. This fact is proved in Lemma 3.12, and will be used to prove
the bounds on the Sobolev space once they are proved them for the Nikol’skii case. Such an inclusion is
not as obvious when we move to more general geometric spaces, where we will have to treat these spaces
separately.

Now let us speak of the above three cases simultaneously. To do this, let F among H*, W, N; In
each case, ||-||p is a norm on F. In fact, (F, ||-||) is a Banach space. We will be interested in members of
these spaces that are probability distributions with a bounded norm, so we define

Py (F) ::{feIF ‘ f>o0, /f(x)dx:l, fIIFSm}

for each m > 0. It is over these balls that we take wish to take the supremum, i.e. if R is the risk, we
wish to find R > 0 such that for some constant ¢ > 0, which may depend on F and m,

sup R<en I
FE€Pm(F)

for every n € N. In any of our results of this form, it is assumed that P,,(F) is non-empty. This is not
always the case; P, V) is empty for every m < 1, as the first term is || f||; = 1.

Before proceeding, note that the definitions above are not those used in [14], which will be explained
now. In each case, the second term of |-||z, which we will denote by |||/, is a semi-norm on F. It can



be shown that if f is a probability density and |||z < oo, then also ||-|| < oo. For example, in the
proof of Theorem 1.1 in [14], it is proven that for every s > 0 there are constants a,b > 0 such that
1flleo < allfllze +b. That is to say, the subsets of F and F which are probability densities coincide. As
we are only interested in probability densities f, this change does not impose any additional constraints.
Introducing this first term makes it cleaner to bound the variance. The definitions given above are the
inhomogenous versions of the spaces, whereas using only the seminorm gives the homogenous spaces F.
We will not mention ||-||; and I will not again, just know that the bias terms are bounded in terms of
I|-lz, and not ||-||p as stated.

3.2 Conditions on the kernel

One of the questions motivating our study is this: what properties of the kernel K lead to good conver-
gence rates? The answer is largely foreshadowed by the following definition, which will be justified by
its use in bounding the bias (see Lemma 3.4).

Definition 3.2. Let s > 0 and £ = |s|. We say that K : R — R is a kernel of order s if for each
integer 1 < j < £ the following integrals exist and

/K(u) du =1, /qu(u) du =0, Ci(s,K) := %/Ms | K (u)] du < 0o (3.4)

We shall see that kernels of higher order attain faster convergence rates, assuming f is sufficiently
smooth. It can be shown that if 0 < ¢ < s and K is bounded kernel of order s, then K is also a kernel
of order t. In situations where we have an integral of the form | K(u)g(u)du, and g is many times
differentiable, assuming that K is a kernel of order s will allow us to kill all terms up to order ¢ in the
Taylor expansion of g.

The first of the above conditions was already assumed to ensure the estimator integrates to one. The
last condition corresponds to a sufficiently fast decay of K. It is the vanishing moments condition that
may be difficult to satisfy. If K is even, that is K(—u) = K(u), then all of the odd moments vanish. It
can then be seen that every kernel in Figure 4 is of order 2.

The even moments require some care. We now follow the discussion in section 1.2.2 of [141] to show
that such kernels may be constructed from orthonormal bases of polynomials.

Proposition 3.3. Let {¢n,}55_ be a family of polynomials, where ¢, is a polynomial of degree m, that
are orthonormal with respect to a positive weight function w : R — R4.. That is,

/w(u) du=1 and /gbm(u)gzﬁk(u)w(u) du = Omi

for all non-negative integers m, k. Let s >0 and £ = |s|. Then the following is a kernel of order s:

4

K(u) =) ém(0)dm(u)w(u).

m=0

Proof. First notice that ¢g(u) = ¢(0) # 0 for every u € R. Then, by the orthonormality condition,

¢m(0) )
$0(0) /¢0(U)¢m(u)w(u) du = 1.

Next, let 1 < j < 4. As ¢, is a polynomial of degree n, there exist coeflicients ¢,; € R such that

4
[ K@= [ ntwon(wutn) du+ Y
m=1

, J
w = Zo cqj®j(u) for every u € R. This can be used to show the necessary moments vanish:
a=

J 14 J
/ K@) du=3"3" ¢q6m(0) / Do (1) S () () A = 3 g (0) = 07 = 0.
q=0

q=0 m=0

Finally, it must be checked that Cy(s, K) < oo, but this is guaranteed by the necessarily fast decay of
the weight w. O



There are many such families of polynomials, for example the Legendre polynomials with weight
w(u) = 2I(|lu| < 1), and the Hermite polynomials with weight w(u) = exp(—22/2)/v/2m. Notice that
these weights correspond to the rectangular and Gaussian kernels respectively. This construction then
has another interpretation: we take a kernel of lower order, and scale it by some polynomial, choosing
the coefficients to cause the higher moments to vanish. The example of a fourth order kernel in Figure
4 is made by scaling the rectangular kernel by a quadratic polynomial. In Figure 6, we plot two more
examples of order 4 kernels, based on the Gaussian and Epanechnikov kernels.

A kernel K constructed in this way inherits some nice properties from the weight function w: K is
bounded if w is, K shares the support of w, K possesses as many derivatives as w, and K is even if w is.
The last is true as the family of polynomials obeys ¢,,(u) = (—1)™ ¢, (u) when w is even. In particular,
¢m(0) = 0 for every odd m, and the kernel is then only constructed from every second polynomial in the
family. This is the case for the above polynomial families, and below kernels.

Epanechnikov Gaussian
150
0.6 -
1.25 -
0.5 -
1.00 -
0.4 -
0.75 A
g E 0.3 A
< 050 - ¥
0.2 -
0.25 A
0.1
0.00 A
0.0 A
-0.25
T T T T T _0.1 T T T T T
-1.0 -0.5 0.0 0.5 1.0 -2 -1 0 1 2
u u

Figure 6: Examples of fourth order kernels are plotted. Left: K(u) = 22 (1 — Zu?) Kg(u),
where Kp is the Epanechnikov kernel. Right: K(u) = 3(3 — u?)K¢g(u), where K¢ is the
Gaussian kernel. Both kernels display taller central lobes than their order 2 counterparts, but
also possess negative lobes further from the origin.

It can be seen that kernels of order s > 2 must be negative on a set of positive Lebesgue measure.
This is because in order for [u?K(u)du to vanish and K be non-negative almost everywhere, K must
vanish almost everywhere, and so cannot integrate to 1. Thus, the kernel density estimator fmh is not
guaranteed to be everywhere non-negative. For this reason, when using a kernel of order s > 2, fnyh
must not be interpreted as a probability density, only as a function that approximates the probability
density f. This sacrifice is one we are willing to make — our interest is in the rate of convergence.

However, many authors take issue with the use of estimators which may be negative, and some
insist that the estimator should itself be a probability density (see for example [6]). The simplest way to
guarantee this is to use only kernels of second order, but this will cap the convergence rate of the estimator.
Another solution is to use higher order kernels and modify the estimator to force it to be non-negative, for
example f () either max(0, fn,n(2)) or [fnn(z)|. Clearly |f; ), (z) = f(x)| < |fn,n(z) — f(z)|, and so all
the risks mentioned (MSE, MISE, R,,) decrease by using this switch. In particular, every bound on the
error and convergence rate to come will hold true for A;:’ »- However, it may be the case [ f; plz)de > 1,

and so f,’; , is also not a probability density, so must be renormalised, typically by numerical means.
Under certain conditions, such an estimator may still attain the faster convergence rates (see [9] for some
numerical examples).
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Throughout this section, we will be dealing with integrals of the kernel. For aesthetic reasons, we
make use of the linear substitution u = (y — x)/h. Here we list some that will be used later. The first is
used to bound the variance,

E [Kp(X /Kh —z)° f(y)dy = %/K(U)Qf(:quuh)du (3.5)

The next rewrites the expected value of the estimator, which is used when bounding the bias,

E | fun(@)] = ZEKh i — )] /K F(x + uh) du, (3.6)

Of course, the reverse substitution, y = x + uh, tells us that the following integral is still unity,

/f(x—l—uh)du:/f(y)dy:l. (3.7)

3.3 Decomposing the bias

The bias term relies very heavily on the regularity enjoyed by f. As such, it will be mainly dealt with
separately in each case. However, our proofs in this chapter will rely on the same method: using kernels
of a certain order and Taylor’s theorem to express the bias in terms of derivatives of f. This method is
expressed in the form of the next lemma.

Lemma 3.4. Suppose s > 0, £ = |s], f be € times differentiable, and K a kernel of order s. Then for
every h > 0 and x € R the bias may be written as either

h L
x) = /K(u)ﬂf“)(x + zuh) du where 0 < z < 1 may depend on x,u,h, (3.8)

or b(x /K

Proof. As f is £ times dlfferentlable, the Taylor expansion of f(x + t) about x can be written as

( —2)7 Oz + zuh) dz du. (3.9

(J)
flz+t) = +Zf tﬂ+R(xt)
where Ry is the remainder term, which may be written as either
t@
Ry(x,t) = Ef(@ (x + 2t) for some 0 < z < 1 that may depend on z,t, or

Ry(z,t) = i ) /1(1 —2)7 O (x4 2t) de.

This Taylor expansion with ¢t = wh is used together with (3.6) to rewrite the expectation of the estimator.
Since K is a kernel of order s, the first integral is unity and the intermediate integrals vanish as 1 < j < /£,

fnh /K f(z 4+ uh)du
= f(x /K du+zf. hj/uJK( du+/K )Ro(x, uh) du

= f(x) +/K(u)R1g(a:,uh) du.
Then, the bias only depends on the remainder term

ba) = E [fun(@)] - (@) = / K (w) Ro(, uh) du.

The first and second results follow by using the first and second remainder terms respectively.

11



3.4 Estimating the variance

The quantity o2 can usually be bounded with minimal assumptions on the regularity of f. Firstly, it

can be bounded by a certain integral of the kernel as follows.

Lemma 3.5. Suppose K is a kernel. Then for any h > 0,n € N and z € R,

1
o%(x) < .y /K(U)Qf(x + uh) du. (3.10)
Proof. We introduce the random variables
Yi(z) = Kp(X; — z) — E[Kp(X; — 2)], for each 1 < i < n. (3.11)

These have many helpful properties, which we show using the linearity of E. Firstly, the sum of ¥; can
be expressed in terms of fy, 5,

n

LS KX - x)] = funl@) ~E [ fun(a)]

i=1

1 n 1 n
ﬁ;mx) = ﬁ;Kh(Xi—@—E

Secondly, note that Y; are independent and identically distributed with expected value 0. Then, expected
values of cross-terms vanish,
i#j = EYi(2)Y;(z)] = E[Yi(z)] E[Y)(x)] = 0.
Using this, notice only E [Y;*(x)] is needed,
n 2 n
E (Z n<x>> —E | Vi(2)*+2) Yi(@)V;(x)| =) E[Vi(2)?].
i=1 i=1 i#j i=1

The last thing to notice is that (3.5) can be used to bound the expected value of Y;(z)?,
E [V7(@)] = E [Kn(X; — )] ~ E[KW(X; ~ )] < B [K0(X; ~ 7] = 1 /K(u)2f(x + uh) du. (3.12)

The result follows by stringing these facts together:

n 2
02(:17) =E {(fmh(z) —-E {fmh(x)DQ} =F (711 ZK(&?))
= ;i]E [Yi(z)?] < %/K(U)Qf(x—i—uh) du.

O

We see that if we could estimate the integral, the variance would be bounded in terms of 1/nh. Next,
in order to construct bounds on the MSE and MISE, we estimate (x) and [ 0?(z) dz. In the first case,
we will need to assume that f is essentially bounded.

12



Proposition 3.6. Suppose K € L2. Then for every 0 < h and n € N, the following estimates hold:

(i) For any x € R and f € L™,
1
2
o*(2) < | fllo IE1l3 —- (3.13)

(i) For any probability density f,
1
2 < |K|3—=. 14
[oan < KB = (3.14)

Proof. To prove (i), start with (3.10). The constant is derived using f < || f||,, almost everywhere,

[ K@ uydu <171 [ K du= £l K]S

To prove (ii), integrate (3.10) over = € R. The order of integration can be swapped by Tonelli’s theorem
since the integrand is non-negative. The inner integral is unity by (3.7), so the constant is given by

//K(u)zf(x+uh)dudx:/K(u)z/f(x—i—uh)dxdu:/K(u)zdu: K12

O

These estimates indicate it is sufficient to have nh 2222 o in order for the variance terms to decay
to 0. This happens for example when h = cn™? for 0 < ¢ < 1. Thus we want the bandwidth to limit to
zero, in order for the bias terms to decay, but not too quickly.

3.5 Holder spaces

In this section we aim to prove Theorem 1.1 from [14], which bounds the Mean Squared Error over the
Holder space Py, (H?) for s > 0,m > 0. This will be the blueprint for similar proofs in the future.

Recall (2.7) from Proposition 2.3, which states MSE = 02 +b2. We now try to bound the terms of the
right-hand side. Assuming K € L?, Proposition 3.6 with |||, < [[f]l,;c < m gives 02 < ||K|3m/nh.
To bound the bias term, the regularity of f must be used.

Proposition 3.7. Suppose s >0, f € H® and K is a kernel of order s. Then for every h > 0,n € N
b(z)| < C1(s, K) || I3 h° (3.15)

Proof. Recall (3.8) from Lemma 3.4. Since K is a kernel of order s, we have [u’K(u)f® (z)du = 0.
Smuggling this term into the integral, we express the bias as

b(z) = / K(u) (“Z)'

where 0 < z < 1 may depend on z,u,h. We now use f € H® and |z| <1 to write

(fO(z + zuh) — fO(2)) du,

2uh|* ™ < || fllpge uh]*"

[£O @+ zuh) = £O@)] < 1

Together these give the bound

1
o) < 5

1
<5 [ KGOl £l

”fll!Hs /|u|6 |K (u)| du.

J @bl |10+ zub) ~ 1) du

uh*~" du

— hS

13



This result with || f[|;;. < m gives b < (Ci(s, K)m)?h?*. Notice that the variance decreases with
bandwidth, while the bias increases. The is again the bias-variance tradeoff mentioned in Section 77:
minimising one will cause the other to grow very large. We must choose some h that minimises their
sum, the Mean Squared Error. Assuming the hypotheses of both propositions are met, together they
give the estimate

1
MSE(z) < m|K[l — + (Ci(s, K)m)*h*,

for every f € P, (H*) and x € R. Our aim is to choose a sequence of bandwidths h = h,, to achieve a
tight bound on the Mean Squared Error. An obvious path is to choose the h that minimises the above
estimate. Some simple calculus shows this happens at

) 1/(25+1)
nr 1K1 P —1/(2541)
n 2msC (s, K)2 ’

As mentioned before, the constant is not of interest, only the rate. Choosing h = h,, = n~1/(2s+1)
gives

(nh)—l — B2 = p—28/(2s+1) (3.16)

This in turn gives MSE < Cn~2%/25+1) where C = C(s,m, K) = m ||K||§ + (C1(s, K)m)?. Notice
this bound does not depend on f, only that it lies within P, (#H?®). This discussion can be distilled into
the following result.

Theorem 3.8. Suppose s > 0, F = H* and K € L? a kernel of order s. Choose h = h,, = n~1/(2s+1),
Then for every m > 0 there exists a constant C = C(s, K, m) > 0 such that for every n € N and z € R,
the corresponding kernel density estimator f, 5 satisfies

sup MSE(z) < On~28/(2s+1), (3.17)
fEP,(F)

This is what we were looking for; the rate R in this setting is at least 2s/(2s +1). Theoretically, as s
grows to infinity, i.e. as we look at smoother families of functions, the rate of convergence R approaches
1. This is the typical rate of convergence when using the Mean Squared Error for parametric problems,
such as estimating the mean of a distribution with finite variance.

The rate of convergence attained here is in fact the optimal one, as will be the case for each theorem
in this section. We will not prove this here, as it requires an altogether different approach which can be
found in section 2 of [14].

3.6 Nikol’skii spaces

We now move on to our second regularity space. The Nikol’skii condition (3.2) is a global one, concerning
an integral over the entire space. For this reason we use the Mean Integrated Squared Error. The goal
of this section is to prove Theorem 1.2 from [14].

Theorem 3.9. Suppose s > 0,F = N5 and K € L? a kernel of order s. Choose h = h,, = n 1/ (2s41)
Then for every m > 0 there exists a constant C = C(s,K,m) > 0 such that for every n € N, the
corresponding kernel density estimator f, n satisfies

sup MISE < Cn~28/(2s+D), (3.18)
FEPR(F)

The proof of the above claim will follow the same steps as the previous Theorem. We must first find
a bound for the bias assuming that f lies in a Nikol’skii space. To prepare for the cases p # 2 that we
mention later, we bound the bias for every 1 < p < oc.

14



Proposition 3.10. Suppose s >0, 1 <p < oo, f € /\/;f and K is a kernel of order s. Then for every
h >0 and n € N, the bias satisifes

P
[ as < (ats, 1) 1l ) 1
Proof. Recall (3.8) from Lemma 3.4. Since K is a kernel of order s, we have [u‘K(u)f®(z)du = 0.

Moreover, because fol(l —2)=Vdz = 1/¢, we can smuggle a term — f*)(x) into the inner integral to
attain

uh)t [t
b(x) :/K(u) (uh) /0 (1 —2) (O (x + zuh) — fO(x)) dz du.

(¢—1)!
Now take the absolute value, use the triangle inequality, raise to the power p and integrate over x € R.
The generalised Minkowski inequality, see for example Proposition 6.19 from [8], is used to swap the

integrals over x and u,

/|b(x)|de < / </|K |“h| / (1—2z)t ‘f“)(wrzuh) —f“)(x)( dzdu)p da

1/p P

(w2 (- - s o]

Focus now on the inner two integrals. Again using the generalised Minkowski inequality, we swap the

integrals over z and x. Because f € N and |z| < 1, the factor on the right is bounded by || f]| uh|*~".
As noted before, fo 2)=1dz = 1/¢, so we get the bound
1
I::[/(/ (1- él’f(é)x—i-zuh O ) dx]
0
1/p
/(l—zél</‘f(e (z + zuh) — fO(x dm)
0
1 —t
o uh
< [ =2 Ul bl < ],
Finally we simplify the result, and recognise C1 (s, K),
P
uh uh|*™* Hf”N
[ Pdm<</K i du) ( bl au)
O

We are now ready to conclude the proof of the above theorem. Recall (2.8) from Proposition 2.3,
which states MISE = fo )dx + fb2 dz. The first term is bounded by Proposition 3.6. Use
Proposition 3.10 with p = 2 and [flla; < m to bound the second term. The theorem is then proved
with

C(s, K,m) = | K3+ (Ci(s, K)ym)*. (3.19)
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3.7 Sobolev spaces

Our last regularity space is the Sobolev space. Here we prove a version of Theorem 1.3 from [14].

Theorem 3.11. Suppose s € N, F = W5 and K € L? a kernel of order s. Choose h = h,, = p~1/(@2st+1)
Then for every m > 0 there exists a constant C = C(s,K,m) > 0 such that for every n € N the

corresponding kernel density estimator f, , satisfies

sup MISE < Cn~28/(2s+1), (3.20)
fEPm(F)

Notice that this is precisely Theorem 3.9 with s an integer and Wi replacing NV§. The result is rather
immediate from that result, and the observation that W C sz for every s € N and p > 1.

Lemma 3.12. Suppose s €N, 1 <p < oo and f € W,. Then, ||fHN; < Hf”w;

Proof. Since f € W3

p7
expansion on f© to write

we have that f(©) exists and is absolutely continuous. Fix t € R. Use a Taylor

1
FO@+1) - fO() =1 / FED (@ 2t) dz,

0

where we recognise £ + 1 = s. Now raise the absolute value to the power p and integrate over = € R.
Use the generalised Minkowski inequality to swap the order of integration. The inner integral can be
recognised to be || f ||p using a linear substitution,

|t|—p/‘f(£>(x+t) 7f<5>(x)”’ do < / </01 ’f(s)(z+zt)‘ dz>p da

</01 [/‘f(s>(x+zt)‘p dx] v dz)p
<([ ] =) =]

We conclude by taking the p'" root of this, recalling 1 = s — £ and taking the supremum over ¢ € R,

IN

p
p

[f |f(e)(x +1)— f(e)(x)|p d:c} e
|t|57€

< 71, + |7

s = + sup =
1Ly = 171, +sup L= 11l

O

In particular, this Lemma states that P, (W35) C Py, (N5) for every s € N and m > 0, so Theorem
3.11 is just a special case of 3.9. The inclusions of one regularity space within another are very common,
but they may not hold in the more generalised spaces we see later.
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3.8 [P risks and other results

We bring this section to a close by discussing some results which we will not cover in detail. Firstly,
there similar results to Theorems 3.9 and 3.11 for all values of p € [1,00), using the L? risk R,. This
was done originally in [1] for Sobolev spaces. The rate of convergence acquired is R = sp/(2s + 1), and
is proved to be optimal. This result requires additional assumptions, such as K being bounded. Also,
in the range 1 < p < 2, the supremum is taken over the space of probability densities f in F having
| fllz < m and compact support in some interval (xo — 7,0 + r), written P,,(F,zo,7). One way to
approach this problem is to decompose the LP risk into two terms.

Proposition 3.13. Suppose f is an estimator of f and 1 < p < oo. Define the stochastic error
. . P . P
S:=E Hf(m) —-E {f(x)} H and the approximation error B := HIE {f} - fH . Then:
P P

Ry, <2°"'(S+B). (3.21)
Proof. Start with this application of the triangle inequality of the p-norm,
|7 =], <7 ==Ll + e 1] - 1],
P p P
Then use the power mean inequality,
v (7= [1 )
p P

To get the result, take the expectation, noting that the second term is independent of each X,

<o (a]g-5[f

|-

* el -

p

Rp:EHf‘f

el -

):?*@+B)

p

We can see that the approximation error can be expressed simply in terms of the bias,

B:w%=/wmww.

Estimating this term then depends on the regularity space F. In the case of f € N;, [ €W,, we can
do this using Proposition 3.10, Lemma 3.12. Bounding the LP risks then only requires estimating the
stochastic error. When p = 2, we can use Tonelli’s theorem to write express S in terms of o2,

SZJE/(f(x>—1E[f(x)D2 dxz/E[(ﬂx)—E[f(x)]ﬂ dx:/UZ(x)dx.

We then think of the stochastic error as being similar to an integral of the variance. Indeed, the stochastic
error will also not depend much on the regularity of f. Unfortunately, bounding this term is more difficult
than the standard variance term.

Secondly, is possible to study kernel density estimation on R?. For example, by using some kernel
K : R®™ — R which integrates to one. Kj(u) is defined as h=¢K(u/h) to ensure that K and the
kernel density estimator integrate to one also. There, the variance estimate becomes 1/nh?, and the
convergence rates become 2s/(2s + d) and sp/(2s + d). This worsening with dimension is known as the
curse of dimensionality.

Lastly, notice that we used the same bandwidths and attained the same errors for each of our spaces.
Each of the spaces we studied are special cases of the Besov spaces (see [15]). Kernel density estimation
over Besov spaces on R is studied in [10].
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4 Spaces of homogenous type

In this section we present the modern geometric setting. We work on a metric measure space (M, p, ).
This is the minimal structure over which kernel density estimation makes sense; we can assign a distance
to pairs of points, and we can integrate.
The metric gives the notion of “closeness” and we can define the open ball of radius r» about a point
r €M as
B(z,r) :={y e M| p(z,y) <r}.

The open balls are ubiquitous in what follows, so we assume they are measurable and label their volumes
Vi(z,r) = p(B(z,r)).

We currently have no control over the change in V' (z, ) as the centre z is moved or the radius r increases,
as we would in the case of R. In order to give us some bounds on the growth, we assume some geometric
constraints.

Assumption I

We assume that (M, p, ) is a measure metric space such that y is a positive Radon measure, (M, p) is
locally compact, and the following two conditions are satisfied:

1. The volume doubling condition,
dep > 1 0 < Vi(x,2r) <coV(x,r) < o0 Vo € M,Vr > 0.

2. The non-collapsing condition,
Jep >0 Viz,1) > ¢ Vo € M.

The non-collapsing condition will not be used until the end of this section, where it will be used to
bound the volumes of balls with radii » < 1 in terms of their radius. It is also an added assumption only
when p(M) = co. That is to say, if a space satisfies the volume doubling condition and p(M) < oo,
then the second condition holds true, (see Proposition 2.1 of [7]).

We focus now on the volume doubling condition. This tells us that each ball has positive and finite
volume, and it allows us to bounds the growth of balls as the radius increases. This in turn allows the
estimation of some simple integrals (see Lemma 4.4). A space satisfying the volume doubling condition
is said to be a space of homogenous type.

4.1 A notion of dimension

We can see the volume doubling condition allows us to bound the volume as the radius increases by any
factor, and this will give us a notion of dimension in our framework. For the current discussion, define
dp :=log, co.

Proposition 4.1. Let A > 1,7 >0 and x € M. Then
V(x, Ar) < coA™V (x,7)
Proof. Tt can be proved by induction that for each k € N
V(x,2%r) < cfV(x,r) for every z € M and r > 0.
Since A > 1, there is some n € Ny such that 2" < A < 27+l Then
< (20)loB() = \do
Since A < 2"+ we have B(x, A\r) C B(x,2"*1r), and so we have

V(z,Ar) < V(z, 2" ) < g™V, r) < cod®V(a,r)
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Thus we see for d’ = dy = log, co, the following is true
Jej >1: V(x,Ar) < cf))\d/V(;v,r) Vo € M,r >0 (4.1)

In a sense then, dy acts like a dimension — remember that on R™, V(z, A\r) = A"V (x,r). However, this
could be true for some d’ < dg. In such a case, it is unnatural to refer to dy as the dimension of the
space. This motivates the following definition.

Definition 4.2. Let (M, p, u) be a space satsifying the volume doubling condition. The minimal value
of d' such that (4.1) holds, should it exist, is said to be the homogenous dimension of the space.

Later we will require that some quantities are larger than d (see Lemma 4.4). So, it will be less
restrictive to use as small a value of d. In what follows, we use d to mean the homogenous dimension
should it exist, otherwise we will use any d < dy obeying (4.1), with ¢, the corresponding constant.

Using this notion of a dimension, we can relate volumes of balls of different centres.

Proposition 4.3. Let x,y € M,r > 0. Then
pla,y)\"*
V(z,r) < (1 + ’) V(y,r). (4.2)
r

Proof. It can be proven using the triangle inequality that B(x,r) C B(y,r + p(z,y)). Then, noting that
1+7r"1p(z,y) > 1 and applying (4.1), we get

Viz,r) <V (y,r+ p(z,y)) V(y, <1+p(i’y)> 7’> < ¢ (1+M)dV(y,T)

4.2 Useful integral estimates
We turn our attention to an important quantity. For § > 0,7 > 0 and =,y € M, we define

(1 N p(ar,y)) . (4.3)
V(z,0)V(y,9) 9

This symmetric function is a very helpful tool in the future, and will be used to localise the kernels
(see Theorem 6.2). As seen in Section 1, we will deal with integrals of the kernel and its square. The
remainder of this chapter is then dedicated to estimating the integrals of D5, and DE’T.

D(S,T(xyy) =

The first step is the following estimate, which comes from applying (4.2) to bound V(y,8)~ /2,

T —7+d/2
Ds(z,y) < \/chV(x,8) 7! (1 + o (S’y)> . (4.4)

We then see that estimating the integrals of Dj,(z,y) and Ds (z,y)? over y will rely on integrating
the factor 1 + §~!p(z,y). If we raise it to a negative power —, it is a generalisation of the function
R — Ry : o+ (146 t|x]]2)”", and captures the idea of polynomial decay on our space M. This
real version is known to be integrable when 7 > n, which can be shown by using polar coordinates. We
then suspect (1 + 0~ !p(x,y))~7 is integrable when 7 > d, which we shortly prove. This gives us the
opportunity to illustrate how integrals may be estimated despite the little geometric structure.

Before continuing, we make another quick note on integration. From now on, integrals will be
performed with respect to the measure p. They will be written as | gdu for single variable functions,
or by [g(z,y)du(y) for multi-variable functions to distinguish which variable is integrated over. An
integral with an unspecified domain is understood to be over the entire space M. The expectation E and
LP = LP(M, u) are defined similarly to before, but where the integration is over M with respect to p,
and ~ is defined by f ~ g when f = g p-almost everywhere. The properties mentioned before still hold,
for example E is linear, and (LP,|| - ||,) is a complete normed vector space. Also, the decompositions
from Proposition 2.3 still hold: MSE = 02 + b% and MISE = [o?du + [ b*du.
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Lemma 4.4. Suppose 7 > d. Then there exists a constant Cao(7) > 0 such that

Isr(z) == / (1 + p(”;’ y>>_T duly) < Co(T)V (2, 0) (4.5)

for every § >0 and x € M.

Proof. We use the idea of dyadic decomposition. Fixing some x € R and § > 0, split the metric space
into the nested annuli

M =B(z,86)U | ) M,
v=1

where M, := B(z,2"6) \ B(z,2"~10) for » € N. Then the integral can be expressed as

I (z) = /B - <1 +£ (f; y)>_T du(y) + i /MV <1 +£ (9;’ y)>_T du(y).

On B(z,6), p(z,y) > 0 and so (1 4+ 8 1p(x,y))~" < 1. The first term can be estimated by

/B(x,a) (1 * p(:zg y))_T du(y) < V(x,d).

For any v € N, we have by definition M, C B(z,2"d). This gives us the estimate

w(M,) < V(x,2"8) < ch2"V (x,6).

On M,, p(x,y) > 27§ and so (1+ 0 ' p(x,y))"" <2771, The v term is then bounded by

J (1 + 25 y)) du(y) < 277D p(M,) < at2 VIV (@,9).
M,

Using these estimates, the integral satisfies

L4 ¢p24 > 20Dy (g, 6).

v=1

1577'(-'1;) <

Since 7 > d, this geometric series converges to (1 —2977)~! and so we have proved (4.5) with

“

02(7')214-72%_24.

(4.6)

O

There are a few ways this could be bounded, but all of them take the form I, (x) < ¢V (z,d) for
some constant ¢ = ¢(7) > 0. This is illustrated by the corresponding lower bound

ez [ (1+252) " du) 2 27 V(o)

In this sense we say the integral estimate above is sharp. This Lemma allows us to estimate the integral
of Ds  as follows.

Proposition 4.5. Suppose 7 > 3d/2. Then there exists a constant ¢ = ¢(7) > 0 such that

/ D 7 (a0, ) dpu(y) <

for any x € M and 6 > 0.
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Proof. First use (4.4) to bound V'(y,§)~'/2. Pull the constants from the integral to get

/Da,f(w,y) dp(y) < VeV (w,6)7" / (1 + p(q;’ y))_T+d/2 du(y)

We recognise the integral as I5._q/2(z). Since 7 > 3d/2, we can use Lemma 4.4 to bound it by
Co(T —d/2)V(z,6). This proves the claim with ¢ = \/c{Ca(T — d/2). O

This integral estimate is used so often that the condition 7 > 3d/2 permeates through many of the
later results. In this proof, we had only one factor of V(x,8)~!, which cancelled against the V(x,§)
from Lemma 4.4. If we attempt to bound the integral of D -(x,y)P for some p > 1, there would be
factors of the volume remaining. To deal with this, we finally turn to the non-collapsing condition from
Assumption I.

Proposition 4.6. Suppose 0 < § < 1. Then V(z,0) > z—}(sd for every x € M.
0

Proof. The result comes from the non-collapsing condition, § < 1 and the volume growth condition,

a <V, 1) =V(,0716) < 56~V (x,0).

Another statement of the above is

/
V(z,6)' < Z—Oé_d for every x € M,0 <6 < 1. (4.7
1

This is used to pass bounds in terms of V(x,§)~! into bounds in terms of ¢, which helps bound the
variance terms in Section 5. We are now ready for the other integral estimate.

Proposition 4.7. Suppose T > d/2. Then there is a constant ¢ = ¢(1) > 0 such that

/ D (,9)” dpu(y) < 6~

foranyx e M and 0 < § <1.
Proof. First use (4.7) to bound V (y,5)~!. Pull the constants from the integral to get

[ Pscte?aut) < L5 vino [ (1 ¥ p(gy)y au(y).

We recognise the integral as I5o,(x). Since 7 > d/2, we use Lemma 4.4 to bound it by C2(27)V (z, d).
This proves the claim with ¢ = 22Cs(27).
O

A similar proof shows that we may estimate the integral of D§ by c6~4UP=1 if 7 > d(2/p — 1/2)
when 1 < p <2 and if 7 > d/p when p > 2. However, our main tool to make kernels, Theorem 6.2, will
require us to always have 7 > d.

4.3 Examples

We now provide some examples of spaces satisfying Assumption I.

1. Euclidean R™ under the Lebesgue measure. This is of course the space that inspires our studies,
and has homogenous dimension d = n.

2. The sphere S” embedded in Euclidean R”*!. From this embedding, the sphere inherits its measure
(the n-dimensional Haussdorf measure restricted to S™) and spherical metric p(z,y) = arccos((z, y)),
where (-, -) is the inner product on R"*!. This is an example of a space of finite volume and diam-
eter, and has homogenous dimension d = n.

21



3. Riemannian manifolds M™ of non-negative Ricci curvature. The measure and metric are those
inherited naturally from R™. The fact that such manifolds obey Assumption I follows from the
Bishop-Gromov inequality, which also informs us that the homogenous dimension of these spaces
isd=n.

In each case above we see that the homogenous dimension coincides with the standard geometric
dimension. However, this does not have to be the case. It is possible to take a space we normally think
of having dimension n, and equip it with a new measure and metric such that the resulting space satsifies
Assumption I, but for a homogenous dimension d # n. Also, d may take any value greater than 0, not
restricted to the integers. Two examples of such spaces, the weighted ball and the interval [—1,1], are
explored in [3].

Alfhors regularity

Many examples of spaces satisfying Assumption I, such as R, S and many Riemannian manifolds, have
far more geometric structure than strictly necessary, enjoying a property known as Alfhors regularity.
We take a moment to see how this added structure makes our work easier.
A metric measure space (M, p, 1) is said to be Alfhors regular if there exist constants a,b,d > 0
such that
ar® <V(x,r) < brt

for every x € M and 0 < r < diam(M). This is a stronger geometric assumption than our own, and
both 1. and 2. of Assumption I follow from it. Such a space has homogenous dimension d.

The improved control of the volumes of balls granted by this property help us to improve some
bounds. Firstly, in place of 4.3, we redefine

D, 5, y) =6~ (1 N p(:vé, y))

The constant in the integral estimate Lemma 4.4 may be improved, but that is not important. We can
use that estimate to show that for p > 0 and 7 > 1/p, we have

/Df’é(x’y) <67, 5 < Cy(pr)o®t—r),

without assuming that § < 1. This estimate simplifies the requirement for 7 > 3d/2 from Proposition
4.5. In fact, any appearance of that requirement can be replaced by 7 > d.

5 Spectral theory

5.1 The Laplacian and heat kernels
One of the most famous partial differential equations on R is the heat equation:
Oru = Au
where u = u(z,t), A = V2 = V-V = 92 is the Laplacian operator on R, the initial conditions u(z,0) are
known and Dirichlet boundary conditions, ligloou(x, t) = 0 for every t > 0, are imposed. The solution

||
for t > 0 is known to be (see for example [7])

u(e.t) = [ pulo)u(s.0)d,
where p; is known as the fundamental solution of the heat equation, or the heat kernel of the Laplacian,
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We note some important properties by the heat kernel, which we notice is a Gaussian distribution.
Firstly, p:(x,y) = pt(y,z) and so we say it is symmetric. Secondly, it is smooth in each of z,y,t. As a
consequence of the smoothness in y, it is a-Holder continuous in y for every o € (0,1). That is to say,
for any fixed ¢t > 0 and a € (0, 1), there is a constant C such that

Ipe(z,y) — pe(x,y')| < Cly — o/

Thirdly, it obeys a Markov property

/pt(x,y) dy =1 for every = € R, ¢t > 0.

5.2 Functional calculus

We assume now that L?(M, ) admits some non-negative essentially self-adjoint operator L, which maps
real-valued functions to real-valued functions. This is to be thought of as the Laplacian of R.

In the same way that we can define functions of finite-dimensional operators, by diagonalising its
matrix and acting the function on the diagonal elements (its eigenvalues), we can define functions of the
operator L using its eignevalues. This is done using the powerful spectral theorem (see for example [16]).

By the spectral theorem, for any Borel measurable function g : Ry — R, we may define g(L) as

mm:AWMMdEM

where Ey, A > 0 is the spectral decomposition of L. The operator g(L) is also essentially self-adjoint
operator L and maps real-valued functions to real-valued functions, and is called the spectral multiplier
associated with g and L. If additionally g is non-negative, then g(L) is non-negative, and if ¢ is bounded,
then g(L) is bounded. For example, for any s > 0 we may define

LS:/ A°dEj.
0

In particular we can define v/L, and it is also non-negative, essentially self-adjoint operator L and maps
real-valued functions to real-valued functions. We will make use of v/L later.
A second example is the function A — e~**. Using it, we can define the operators

Poi=etr :/ et dFE,.
0

These operators form a commutative semigroup under composition
Pt © Ps = Pt+87

called the associated semigroup of L.
Suppose G is an operator and there is a measurable function G : M x M — C such that

@ﬁm%a/wawﬂww@»mmmwfeDmmmxemmU»

Then G is called an integral operator, and G is called its kernel. As in the previous use of the word
kernel, this function contains all the information of the larger object G. These are precisely the kernels
we will use for kernel density estimation in the next section. In the case that G is self-adjoint and maps
real-valued functions to real-valued functions, then its kernel G is real-valued and symmetric.

For example, if P;,t > 0 is an integral operator, then we call its kernel the heat kernel p:(x,y).
These contain a wealth of information about the operator L, and the ambient space M. In the case of
Euclidean R™ under the Lebesgue measure and L = —A, then these are precisely the heat kernels from
the heat equation.
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5.3 Kernel density estimation

We are now ready to present the second half of the assumptions on our space, which we will use to create
kernel density estimators. The key idea is that we assume the space has some Laplacian-like operator
whose heat kernels exist and enjoy similar properties to those of the Laplacian. These assumptions on
the heat kernels are largely for technical reasons behind the proof of Theorem 6.2.

Assumption II

We assume that there exists an essentially self-adjoint non-negative operator L densely defined on
L?(M, i) which maps real-valued functions to real-valued functions, such that the associated semigroup
P, = e *E t > 0, consists of integral operators with heat kernel p;(z,y) obeying the following:

(i) Gaussian localisation: There exists constants ca,cs > 0 such that
e exp (— c;»,p(x y)?/t)

e (2, )| \/V G

(ii) Hélder continuity: There exists a constant o > 0 such that

pe(2,y) = pe(z,y")] < <p(y y/)>a 62\7‘? (Cesrla y)\[/j) (5.2)
V(y

for every z,y € M and t > 0. (5.1)

for every z,y,y’ € M and t > 0 where p(y,y’) < V1.
(iii) Markov property:
/pt(x,y) du(y) =1 for every x € M and t > 0. (5.3)

Definition 5.1. Let k: Ry — R be Borel measurable and bounded. Then k is referred to as a symbol.
Let h > 0. The associated spectral multiplier is defined as

Ky = k(hWL) = /Oo k(hX) dFy,
0

where Fx, X > 0 is the spectral decomposition associated with /L. If the associated spectral mulitplier Kj,
happens to be an integral operator, that is if there is a symmetric measurable function KCp : M x M — R
such that

(Knf)(e) = [ Ko I ) duto)
for every f € Dom(K),x € Dom(f), then Ky, is called the kernel of Kp,.

To avoid confusion between these objects, we denote the symbols by lowercase letters such as k, g, the
corresponding spectral multipliers by the upper case letters K, G and their kernels by the calligraphic
letters KC,G. We are now ready to set up kernel density estimation.

Definition 5.2. Let X1, -+, X, be indepedent random wvariables identically distributed on M by their
shared probability density f. Let k be a symbol and h > 0 such that the associated spectral multiplier Kj,
is an integral operator with kernel ICp, that satisifies

/ICh(amy) du(y) =1, for every x € M.

Then we define the associated kernel density estimator as

fnh Zlch X“l’

As before, we are curious what conditions on the symbol ensure good convergence rates for the
estimator f, ». In the new context, we have a second question: what conditions are needed for the kernel
to exist and to satisfy that Markov property, for the range of values of the bandwidth A we might use?
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5.4 Examples

The inspiration of our studies is of course Euclidean R"™ equipped with the Laplacian A = (,;9;2.
i=1 "
We must take care to use L = —A to ensure non-negativity. The sphere, and indeed any Riemannian

manifold with non-negative Ricci curvature, may be equipped with a Laplace-Beltrami operator. These
form the majority of nice examples of spaces under our framework.

Another example is to equip a space we think of as naturally possessing one operator, with a different
choice of operator. For example R™ may equipped with an elliptic operator, such as an anisotropic
Laplacian. Also, the examples of the weighted ball and interval with their new metric and measure can
be equipped with a corresponding operator (see [3]).

6 Recent results on spaces of homogenous type

6.1 Regularity spaces of interest

The first step in this process is again to define the function spaces in our study: Holder, Nikol’skii and
Sobolev. We do this by translating each concept from the original definitions to our new setting. Every
instance of |z — y|, the metric on R, should be replaced with p(z,y), the metric on M. The p-norms are
now defined with respect to the measure p over M.

However, it is not so obvious how to define the derivative of f in this context. The space does not
necessarily have a translation, so certainly no immediate definition of a derivative. Remember though
that we have equipped this space with a Laplacian-like operator L, and that the Laplacian on R is
A = d?/da?, the second derivative. L then gives us a notion of a second derivative over these metric
spaces. Loosely speaking, we think of L'/2 as a differential operator, and redefine the function spaces by
replacing the derivatives f(©) by Lf/2. In the case of R, this returns the derivatives when ¢ is even, and
captures a similar idea when £ is odd.

The last obstacle is the discrete difference g(x + t) — g(z) in the Nikol’skii space. Again, there is no
concept of a translation by t, so we define it instead as the average of the quantity over a ball of radius
t. In the case of R, this is an equivalent definition.

Definition 6.1. Let s >0 and 1 <p < oco. A function f: M — R belongs to

(i) the Holder space, H®, if

|L2 f(x) — LY2 f(y)]
p(z,y)s—*

1fll3¢e := 1fll o +sup < o0;
Ty

(i) the Nikol’skii space, N, if

1/p
L2 f(y) — L2 f ()] du(y) du(x)] < 00;

R +suptt—
I£llg; = 171, + s

/V(x’t)l/B(z,t)

(iii) and for s € N, the Sobolev space, W, if

7wy = 151, + ]| 2727 | < oo

The above spaces capture the same spirit of the classical functions spaces over R. Once again, it is
over the subsets P, (IF) of these spaces that are probability distributions and the norms are bounded by
m > 0, which are assumed to be non-empty, that we will study kernel density estimation.
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6.2 Conditions on the symbol

As in section 3.2, we anticipate that we will need some restrictions on our kernels. In the previous section,
it was discussed that we start with a symbol k, we can create spectral multipliers Kj := k(h\@), and if
K, happens to be an integral operator, its kernel K}, is precisely the kernel we use for our kernel density
estimation. This time then, we have two questions: what conditions must the symbol obey so that (i)
K}, is an integral operator, and (ii) the kernel density estimator achieves ’'good’ convergence rates?

Question (i) is answered by the following result, which was developed as Theorem 3.4 in [5] and [11].
These papers use dy from the doubling condition as their notion of dimension, and so we write Theorem
2.1 of [4] which matches our notation.

Theorem 6.2. Suppose k € C7(R4.) for T > d such that

E®FD(0) = 0 for every v > 0 where 1 < 2w +1 < 7, (6.1)
and for some r > 7 + d there exists a constant C > 0 such that

KN < C(1L4+ X" for every A >0 and 0 < v < 7. (6.2)

Then for every h > 0, K}, is an integral operator, and its kernel KCp(x,y) satisfies

/M Kn(z,y)du(y) = k(0) for every x € M (6.3)

and furthermore enjoys the decay
IKn(2,y)| < cCDp - (z,y) (6.4)

where ¢ > 0 is a constant depending on T and the geometric constants of the setting.

Using a kernel satisfying the hypothesis and k(0) = 1, this theorem gives us exactly the function
K, we need to define our kernel density estimators as in Definition 5.2. It also provides a localisation
estimate 6.4 in terms of the functions Ds, we studied in Section 4.2. It is therefore one of our most
important tools, and all of the results to follow will rely on it. To shorten the statements of these results,
we use the following terminology.

Definition 6.3. Let k satisfy the hypothesis of Theorem 6.2. Then k is a symbol of order 7. Further-
more, k is a strong symbol of order T if it also satisifes

E¥(0) =0 for every 1 <v < 7. (6.5)

Clearly a strong symbol of order 7 is a symbol of order 7, which is a symbol. Before proceeding, let
us consider the conditions placed on the symbols k by the hypothesis of Theorem 6.2. The first condition
is equivalent to the symbol having an even extension in C7(R). The vanishing derivatives here and in
(6.5) correspond to vanishing moments of the Fourier transform of k, which is a common tool in studying
kernel density estimators on R™. The second condition is met if the function is compactly supported, or
decays faster than all powers of \.

We should again be noted that such symbols exist. It can be checked that the map A~ (14+\7T1)~1
is a strong symbol of order 7. The map A — e
associated kernel KCj, = pj, is the heat kernel of L.

is a symbol of order 7 for every 7 € N, and its
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6.3 Decomposing the bias

The goal of this subsection is to introduce an analogue of Lemma 3.4, which wrote the bias term in terms
of a derivative of f using a Taylor expansion. Here, we bound the bias in terms a power of the operator
V'L acting on f, a method found in [3] and [4], which relies on machinery built in [5].

First note that the expectation value of the kernel Ky is K}, applied to f,

B [K(X;,0)] = |

Kn(Xs, ) f(Xs) dpu(Xi) :/ Kn(z,y)f(y) du(y) = Kn[f](2),
M M

and so the bias term can be written in terms of K, f and the identity operator I,

) = E [ fun@)] ~ f) = - S EKu(Xew)] - f() = (Ko~ Df(x). (6.6)

i=1

If we let h > 0 and i be the integer with 27¢ < h < 27! then the following series can be bounded

in terms of h
oo o

Z 27]’427]’(87@) — Z 27]’5 — 27(7;71)5 — 25272’5 S 9SS (67)
j=i j=i
The following decomposition will eventually be used with ¢ = £ or ¢ = s to take advantage of the above
geometric series.

Lemma 6.4. Suppose ¢ € N and k a strong symbol of order T > d + q with k(0) = 1. Choose some
0 < h <1 andleti be the integer with 2% < h < 271, Then there exists a constant c = e(r,q) >0
such that both

p@)] < ¢y 27" /M Dys (@) |LY2 ()] duly), and (6.8)
b <32 [ Doy ) [£9210) - 2221 (@)| auty), (6.9)

for every x € M and probability density f.
Proof. We first create a decomposition of f. Choose some symbol ¢ € C*°(R) with
supp v C [0,2], Y(A) =1 VYAelo,1], 0<ypN) <1 Vre|o,2].

Then define ¢()\) := () — (2N). Clearly ¢ € C°>°(R,) and supp ¢ C [271,2]. Because of telescoping,
for every A € R} we have

) J
> oA = Jim 0 [w@ N - v 00N
Jj=i+1 Jroe j=i+1

= lim [$(2772) —9(27'V)]
=1(0) = ¥(27"N).
Remembering that 1(0) = 1, we have
Y(27N) + i p(279N) = 1.
j=i+1
Then by Corollary 3.9 of [3]
Uyif + i Dy, f = f, (6.10)

j=i+1
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where the convergence is strong in L', and as usual by the capital letters we denote the spectral multipliers
Wy i = p(27%/L) and ®,—; = ¢(277+/L). Using this and (6.6), we can express the bias as

b(a) = (Kn—DWsif + Y (Kp—1)Pysf. (6.11)
j=i+1
We now introduce the symbols
g'(\) = (k(h2')) — () and  ¢7(\) = (k(h2) — () for j > . (6.12)

X PV

I claim that each of these are symbols of order 7 — ¢, that they vanish at the origin and there exists a
constant C' = C’(1,q) > 0 independent of j such that

’(gj)(y)()\)’ <O forevery A\>0,0<v<7—qgandj>i. (6.13)

Before proceeding, we prove these claims.

Clearly for j > i we have supp g’ C supp¢ C [27%,2]. This compact support away from the origin
prevents the A™7 term from blowing up, guaranteeing ¢’ € C™(R,), and so ¢’ are strong symbols of
order 7,. They are certainly symbols of order 7 — ¢.

The case of ¢g° is more delicate as supp g C supp ) C [0,2]; we must be careful at the origin due to
the denominator. Use ¢ applications of L’Hopital’s Rule,

RN - DB (kB2 — 1)
g0 = lim, Aq = Jlim “——C—

=c¢ lim k9D (n2°\) =0
A—0t

Notice that in these limits, the ¥ (\) can be set to unity as ¥)(A) =1 on [0, 1]. The result is zero since k
is a strong symbol of order 7 > gq.

We now use the same approach to show the derivatives vanish at the origin. Let 1 < v < 7—¢q. Using
the same reasoning, any term containing a derivative of i can be set to zero as all derivatives of ¢ are
zero on [0,1]. Thus, when computing the derivatives of g at zero using the product rule, the only terms
we must compute are the ones where n of the derivatives act on the denominator, and v — n derivatives
act on k(h2')\) — 1. The n*® term may then be computed using n + ¢ applications of L’'Hopital’s Rule.

(6)*)(0) = ZV: lim, (ﬂ(k(mi)\) - 1)) ( dd;; )\_q)

n=0
v—1
=c lim (k(h2'A) = DA™V +) ¢ lim K@V~ (h2iA)A "7
A—0+ o A—0t

= ¢ lim k"HO(h2')) =0
n=0

A—0F

The nt® term vanishes as long as n + g < 7, which is guaranteed by n <v <71 —gq.

And so for every 1 < v < 7 — ¢ we have (¢°)*)(0) = 0. Combined with the fact that ¢ is compactly
supported, we may conclude that ¢’ is a strong symbol of order 7 — ¢. This also tells us that the
derivatives are bounded by some constant C’ that depends on «, 7,i. Notice though that all dependence
on i comes from factors of h2? in the constant, which come from the chain rule. This dependence can be
removed by noticing h2? < 2.

Finally, we must show that there is some constant bounding all the derivatives of ¢/ independent
of j. Notice that k is a symbol and so is bounded. Notice also that A — ¢(A)A~7 is C°(R,) and is
supported within supp ¢ C [271,2], and so each of its derivatives up to order 7 — ¢ can be bounded by
some ¢ depending only on 7 and ¢q. We can express the derivative of order v > 0 in terms of these, by
acting n derivatives on (k(h2/)\) — 1) and v — n on ¢(A)A~9.

d'n. vr—m

‘(gj)w)(A)‘ < ZV:‘ o (k(h27\) — 1)‘ ‘(&V,LMA)A“’
n=0

n

(k(h27)X) — 1)

<cdv sup sup
0<n<vaefz-1,2) | dA”
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For n = 0, (k(h27)\) — 1) is bounded by ||k||,, 4+ 1. For n > 0, we use that k is a symbol of order 7 > n
to write a decay by a rate r > 7 + d. For every A > 0, we have

KOO <00+ <01+ 2) T < or 0,

where C' is the constant from k being a symbol of order 7. This allows us to bound the derivatives

qr
dA\n

(k(h29\) — 1)’ = (h2/)" k(")(h2i/\)‘ < (R2Y"C(1 + (h2 X))~ ) < ¢ (h27)r—m A=+ < oo+,

where in the last inequality we used that A\~(7+%) < 27%4 on the domain [271,2], and (h27)"~" < 1 since
r>7+d>v>nand h2? > 1. This proves (6.13) where the constant depends only on a, 7 but not on
4. This concludes the proof of the claims about the symbols g7.

Then, by Theorem 6.2, we have that for j > 4, the spectral mulitpliers G are integral operators,

. 2—i
and their kernels G;_; satisfy
/M Gy, (w,y) du(y) = ¢’(0) = 0 (6.14)
and enjoy the decay
9, (2.9)| < Do oy w,) (6.15)

where ¢/ = ¢C and ¢ depends on 7 and the geometric constants. Thus ¢’ depends on 7, ¢ but not on j.
We notice that

(B(AX) = DY(27A) = (270)7g (270)  and  (k(hA) — Dg(277A) = @IN)1g 27N), j >,
and so, since each factor of A gives an operator L'/2,
(Kp —D)Wyi =279G5_ LY?  and  (Kj, — [)®y-; =2799G] ;L% j>i.

This allows us to rewrite (6.11) as

= 2799G)_ L9 f(x)

Jj=t

We can write these in terms of the integral operators.
22 [ G L ) duty) (6.16)
We can bound the absolute value using (6.15) to get
i<y 2 [ o)
j=i
<¢Y2 [ Do)
j=i M

which is the first form. To get the second form, we go back to (6.16). Because of (6.14), we have the
option to smuggle in a term of —L%/2 f(z) within the integral,

L9 f(y)| du(y)

L2 f(y)| au(y),

= Z 277 /M Gy (z,y) (L2 f (y) — L2 f () du(y).

Then use the same bounding argument as above.
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6.4 Estimating the variance

Analagous results from the classical case hold by very similar arguments.

Lemma 6.5. Suppose k is a symbol of order T > d. Then for any h > 0,n € N

o(z) < %/Kh(x,y)z’f(y) du(y). (6.17)

Proof. Proceed exactly as in the proof of Lemma 3.5, with two changes. Theorem 6.2 guarantees the
existence of I, so this time define the random variables Y; as

Yi(w) := Kn(Xi, w) — E[Kn(Xy,2)],

and instead of (3.12), use

E[Y2(x)] < E [Kn(Xs2)?] = / K, 9)? £ (y) dy.

O

As before, this Lemma gives us the ability to bound o?(z) and its integral, which in turn will be used
to bound the Mean Squared Error and Mean Integrated Squared Error.

Proposition 6.6. Suppose k be a symbol of order 7 > d. Then there exists a constant ¢ = ¢(1) > 0 such
that for every 0 < h <1 and n € N, the following estimates hold:

(i) For any x € M and f € L,

1
@) < elfll s (6.18)
(i) For any probability density f,
1
2
/0 dp < Cr g (6.19)

Proof. First we claim there is some ¢ = ¢(7) > 0 such that

/’Ch(wyy)Qdu(y) <ch.
This follows from the localisation estimate (6.4); there exists some ¢’ = ¢/(7) > 0 such that |IC,(z,y)| <
¢'Dy - (z,y) for every z,y € M, and Proposition 4.7; there exists some ¢’ = ¢’(7) > 0 such that

[ Dp+(z,9)?du(y) < ’h=4 for every z € M. Now use 6.17 of the above Lemma. To prove (i), use
f < |Ifll., almost everywhere,

/ Kn (e, )21 (9) dn(y) < 11l / Kn (e, 9)? d(y) < el fll b~

To prove (ii), use Tonelli’s theorem to swap the order of integration as the integrand is non-negative.
The remaining integral is unity as f is a probability density,

/ / Kn(w, )2 f(y) dy d = / f(v) / Kn(2,y)? dzdy < ch~ / f()dy = ch?.
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6.5 Holder Spaces

We are now ready to present a version the main result of [1], a generalisation of our Theorem 3.8.

Theorem 6.7. Suppose s > 0, F = H® and k a strong symbol of order 7 > 3d/2 + s with k(0) = 1.
Choose h = hy, = n~Ystd)  Then for every m > 0 there exists a constant C' = C(s,7,m) > 0 such that

for every n € N and x € M, the corresponding kernel density estimator fmh satisfies

sup MSE(z) < Cp~28/(@std), (6.20)
fEPm (F)
Notice the convergence rate R = 2s/(2s + d). This matches the rate we achieved on the one-

dimensional Euclidean space R. So, we have answered the question “how fast are the convergence rates
on these metric spaces?” with the answer “at least as fast as on R?”, which may seem surprising. We
will find this is also the case for the remaining regularity spaces.

This theorem is proved similarly to Theorem 3.8: use (i) of Proposition 6.6 to bound the variance
term, and the following to bound the bias term.

Proposition 6.8. Suppose s > 0, f € P(H*) and k a strong symbol of order T > 3d/2+ s with k(0) = 1.
Then there is a constant ¢ = ¢(1,s) > 0 such that for every h >0 and ©z € M

[b(z)] < c|f]

Proof. Firstly, in this proof we use the shorthand

e . (6.21)

Ta) = [ Dscmala) [L725(0) ~ 22 1@)] auty).

We invoke Lemma 6.4 with ¢ = £ = | s|, and use the above to write
b(z)] < ¢y 277" / Dys roalwyy) [L21 () = 24 (@) duly) = ¢ D27 D s(w), (6:22)
— M —
j=t j=t

where ¢’ depends on 7 and s. Notice it is sufficient to prove that

AC = C(1,8) > 0: Js5(z) < C || fll3: 6°7¢ V6 >0. (6.23)
The result would follow quickly from this, (6.22), (6.7),

b(x)| <€y 27055 SO Fllggy Y 277277770 < 2| fllyyy b7

j=i j=i

We proceed to prove (6.23). We use the fact that f € H?® to write
L2 () = L2 ()| < 11 llyge ol )"
Note that since p(z,y) < 6(1+ 6 1p(x,y)), we have
pla,y) "t <& (140" plx,y))* "

Noticing that Ds,—¢(z,9)(1 + 0 p(2,9))* ¢ = Ds,_s(,y), we get
@) = [ Dsomelwa) | L2 1w) — 21 (@)| auty)

< (1 llygs 65 /M Dsrsl,y) dpi(y).

Since 7 — s > 3d/2, we can bound the integral using Proposition (4.5). This proves the the claim (6.23)
with C(7,s) = C(1,s) = \/c{Co(T — s — d/2).
O
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6.6 Nikol’skii Spaces

Theorem 3.9 can be generalised similarly with the convergence rate 2s/(2s + d).

Theorem 6.9. Suppose s > 0, F = N5 and k a strong symbol of order 7 > 3d/2 + s with k(0) =

1.

Choose h = hy, = n~Y@std)  Then for every m > 0 there exists a constant C' = C(s,7,m) > 0 such that

for every n € N, the corresponding kernel density estimator fmh satisfies

sup MISE < Cp~2s/(2s+d),
fE€Pm(F)

(6.24)

The variance term is bounded by (ii) of Proposition 6.6, and it remains only to bound the bias. This

can be done muchj the same as we did in the Holder case, though less cleanly.

Proposition 6.10. Suppose s >0, 1 < p < oo, f € N and k a strong symbol of order T > 3d/2 + s

with k(0) = 1. Then there is a constant ¢ = ¢(7,s) > 0 such that for every h >0
[1oll, < ellfllars P
Proof. Again, we use the shorthand

)= | Dormile) [E2100) = 22 1)] du(y)
We invoke Lemma 6.4 with ¢ = ¢ = | s|, and use the above to write
Dl <27 [ Doy ala) [L72 1)~ L1 (@)] dut) = Z 279 Ty
— M
j=t
where ¢ = ¢/(7,s) > 0 is a constant. Notice it is sufficient to prove the following:

30 = C(r,5) > 02 || Jsll, < Ol fllp; 6°7° V6> 0.

The result follows quickly from this, (6.26), the p-norm triangle inequality and (6.7),

Ibll, < ¢ D27 ol < SO N fllyy Yo 2774277) 7" < 02| flly, h*.

g=i i=i

We proceed to prove (6.27). Again use the dyadic decomposition seen in Lemma 4.4,

M = B(z,6)U UMV,

(6.25)

(6.26)

(6.27)

where M, := B(z,2"6) \ B(z,2"~'§) for v € N. We bound the integrand on each piece, using o = 7 — /¢

for brevity. Recall (4.4)
Ds o (z,y) < \/>Vx5 (146 p(,y)) 042,
On B(z,9), p(z,y) >0 gives (1 + 5 1p(x,y))"°+%2 < 1. On M, p(z,y) > 216 and so
(146 p(a, y)) o H4/2 < 2w=D(=o+d/2),

Then use the volume growth condition to write

1 V(x,2"9)

Vix,6)” V.0)

V(x,2"8) 7" < c)h2vV (x,26) !
By combining these, we have for y € M,,

Do (,y) < 243/c) 20 =D(o+34/2)y (5 9v5)~1
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Together these allow us to bound the integral by

J&(l‘) = /M D5,0(337 y)F(;Q y) du(y)
= /B(x,a) Ds o (x,y)F(z,y)du(y) + ; /MU Ds o (x,y)F(x,y) du(y)

< \/%V(m,é)_l/ F(z,y)du(y)

B(z,6)

+2d\/cf33Z2(”_1)(_""’3‘1/2)\/(:13,2”(5)_1/ F(z,y)du(y).
v=1 M

v

The integrand is positive and M, C B(zx,2"6), so we can change the integration domain from M, to
B(z,2%5). Now we use the triangle inequality for the p-norm to write

1751, < v/

V(~,5)1/B(_ 5 F(-y) du(y)

p

I 2d\/%3 Z o(v=1)(—0+3d/2)
v=1

Vet [ Ry )

p

Focus on this p-norm, for some ¢ > 0 replacing 2¥§. Because p/V (x,t) is a probability measure on B(z,t)
and x — 2P is convex on R, for p > 1, we can use Jensen’s inequality to move the exponent of p inside

the integral. It can be bounded using f € /\/;f,
p
/ (vw)—l | Faw du@)) ]
B(z,t)

Jvao [ R du(y)] "

s—0
1l 11

1/p

Ve [ FCpdu

p

IN

IN

Then, we may rewrite the above as

— 3 = v—1)(—o vV S\S—
1sll, < v/ 1l 60 + 200/ 30 207 Do) 7 (275)0
v=1

- 3 - v\—o S— S—
_ \/CTO+2d+s Z\/c70 22 (—o+3d/2+:¢ E)] Hf”,/\[ps 55—¢.
v=0

Since o = 7 — £ > 3d/2 + s — £, this geometric series converges and so we have proved (6.27) with
; dte_t -3 90 . , 9T +d+s—L
C(T,S):\/CO+2 \/CO W:\/% |:1+0027'_23d/2+s . (628)

O

6.7 Sobolev Spaces

Once again our final regularity space is the Sobolev space. We now present the p = 2 case of Theorem
3 of [3]. This generalises our Theorem 3.11, with the same convergence rate as before.

Theorem 6.11. Suppose s € N, F = W3 and k a strong symbol of order 7 > 3d/2 + s with k(0) = 1.
Choose h = h,, = n~Ystd)  Then for every m > 0 there exists a constant C' = C(s,7,m) > 0 such that

for every n € N, the corresponding kernel density estimator fmh satisfies

sup MISE < Cp~28/(2s+d), (6.29)
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This time around, we do not have an obvious inclusion of W, within ./\/;f, so the bias term must be
bounded specifically for the Sobolev case.

Proposition 6.12. Suppose s € N, 1 <p < oo, f € W, and k a strong symbol of order T > 3d/2 + s
with k(0) = 1. Then there is a constant ¢ = ¢(t,8) > 0 such that for every h >0

161l < ellFllwg b (6.30)

Proof. We invoke Lemma 6.4 with ¢ = s to write
b) <327 / Diys ) |2 ()| duly) = ¢ D2 2791 |22 | (@) (6.31)
— M —
Jj=1 j=t

where we have defined H to be the integral operator with kernel H(x,y) = Do—j ,_s(x,y). Since 7 —s >
3d/2 and the function is symmetric, Lemma 4.4 states that both ||H(z,-)||; < C and [[H(-,y)|, < C,
where C = C(r,s) = \/%02 (t1—s—d/2). A very well known result of integral operators, see for example
Theorem 6.36 of [3], is that then |[Hgl|, < C'||g|, for every g in the domain of H. In particular, we use

this on |LS/2f|
el <l =t o
P P »

The result is attained by combining this with (6.31), the triangle inequality of the p-norm and (6.7).

o0
Joll, < e> 27
Jj=t

H‘Ls/Qf’Hp < C/CHfHWg ZQ—js < J 2% ”fHW; hs
j=t

6.8 [P risks and other results

We bring the thesis to a close by again mentioning some results we will not prove. Theorems 6.9 and
6.11 have generalisations to p # 2 under the LP risks.

Theorem 6.13. Suppose s >0,1<p<oo,m>0,F= sz and k a strong symbol of order T > 3d/2+s
with k(0) = 1. Choose h = h,, = n~Y (st Then the kernel density estimator fn,h obeys the following:

(i) Let p > 2. Then there is a constant ¢ = ¢(s,p,7,m) > 0 such that for everyn € N

sup Rp < cn 5P/ (2s+d)

fEPm(F)

(i) Let1 <p<2,7>d(1+1/p), xg € M, R> 0. Then there is a constant ¢ = ¢(s,p, T, m,xg, R) >0
such that for every n € N
sup Ry < cn P/ (2s+d),
fer(]F,zo,R)

The above statement is also true if we insert s € N and replace F = W;. As in Proposition 3.13, the
L? risk can be bounded by two terms. The approximation error B = ||b||§ is estimated using Proposition
6.10 or Proposition 6.12 as appropriate. The remaining stochastic term is estimated by Theorem 2 in
[3]. Notice that the requirement of bounded support for p < 2 is also present here, and again the rate
we achieve aligns with the classical case.

In [3], the Sobolev spaces are defined for any s > 0, and the results we have provided are derived
under slightly weaker assumptions on the symbol k. Proposition 6.4 would then requires more care for
non-integer q = s.

The more general class of Besov spaces can also be defined over these metric spaces. These are studied
in detail in [11] and [2], attaining analagous upper bounds to those on R — once again, kernel density
estimation on these metric spaces converges as fast as on Euclidean space.
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