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Setting

Suppose that f is a probability density function (pdf) over R.

That is, f : R → [0,∞) with

∫
f (x)dx = 1.

Suppose that X = (X1, · · · ,Xn) are independent random variables
identically distributed according to f .

If we do not have access to f , can we estimate it from the data X?

As n grows, can our estimates improve?
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In red: an example pdf.
Black circles: the data X , n = 50 numbers generated from f .
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Rosenblatt’s estimator

Rosenblatt (1956) suggested the following estimator:

1 Use K (u) =

{
1
2 |u| ≤ 1

0 otherwise
, the rectangular kernel.

2 Choose a bandwidth h > 0. (Think of h as small.)

3 Dilate K by h: Kh(u) := h−1K (u/h).

4 Centre a copy of Kh at each data point Xi and average.

f̂ Rn,h(x) =
1

n

n∑
i=1

Kh(Xi − x)
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Rosenblatt’s estimator

Same pdf f and data X as before. h = 0.95.
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Can we use a different kernel?

Yes! A function K : R → R with
∫
K (u)du = 1, called a kernel,

will work. Some commonly used examples include:
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The choice of bandwidth

n = 500 data sampled from f . Clockwise from top left: true
density f , estimator f̂n,h with h = 0.3, h = 3, h = 0.03.
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Bandwidth

We must carefully choose the bandwidth h.
h too large leads to oversmoothing, large bias.
h too small leads to undersmooting, large variance.
We must choose a value between these extremes.

We expect that as n grows, the best choice for h will change. So,
we allow h to be a sequence hn. We anticipate hn

n→∞−−−→ 0.
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Kernel Density Estimators

1 Choose a kernel K .

2 Choose a bandwidth h = hn > 0.

3 Dilate K by h: Kh(u) := h−1K (u/h).

4 Centre a copy of Kh at each data point Xi and average.

f̂n,h(x) =
1

n

n∑
i=1

Kh(Xi − x)

This is a kernel density estimator.
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Mean Squared Error

The Mean Squared Error is defined as

MSE(x) :=E
(
f̂n,h(x)− f (x)

)2
=

∫
· · ·
∫ (

f̂n,h(x , x1, · · · , xn)− f (x)
)2( n∏

i=1

f (xi )dxi

)
.

We hope that MSE(x)
n→∞−−−→ 0.

In particular, we hope there exists some convergence rate R > 0
and constant c > 0 such that for each x ∈ R, n ∈ N

MSE(x) ≤ cn−R .
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Bias and variance

The Mean Squared Error has a well-known decomposition

MSE(x) = b2(x) + σ2(x),

where the bias is given by

b(x) := E
(
f̂n,h(x)

)
− f (x),

and the variance is given by

σ2(x) := E
[(

f̂ (x)− E
(
f̂n,h(x)

))2]
.
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Estimating the Variance

Proposition

Suppose f is bounded and K is square integrable. Then for every
x ∈ R, n ∈ N and h > 0,

σ2(x) ≤ C1

nh
,

where C1 = ∥f ∥∞
∫

K (u)2du.

We want hn
n→∞−−−→ 0, but this result tells us that cannot happen

too fast. In order for the variance to vanish as n → ∞, we require
nh

n→∞−−−→ ∞.
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Assumptions on f

Let 0 < α ≤ 1. A function g : R → R is Hölder α-continuous if
there exists some constant C > 0 such that for every x , y ∈ R

|g(y)− g(x)| ≤ C |x − y |α.

Let s > 0, ℓ = ⌊s⌋ the greatest integer strictly less than s. An
ℓ-times differentiable function f : R → R belongs to the Hölder
space, Hs , if

∥f ∥Hs := ∥f ∥∞ + sup
x ̸=y

∣∣f (ℓ)(y)− f (ℓ)(x)
∣∣

|y − x |s−ℓ
< ∞.
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Estimating the Bias

Using a Taylor expansion, where Rℓ(x , t) is the remainder term,

f (x + t) = f (x) +
ℓ−1∑
m=1

f (m)(x)

m!
tm + Rℓ(x , t)

b(x) = E
(
f̂n,h(x)

)
− f (x)

=

∫
K (u)f (x + uh)du − f (x)

= f (x)

(∫
K (u)du − 1

)
+

ℓ−1∑
m=1

f (m)(x)

m!
hm
∫

umK (u)du

+

∫
K (u)Rℓ(x , uh)du
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Estimating the Bias

A function K : R → R is a kernel of order s if it satisifes:

1

∫
K (u)du = 1

2

∫
umK (u)du = 0 for 1 ≤ m ≤ ℓ = ⌊s⌋

3

∫
|u|s |K (u)|du < ∞

Proposition

Suppose s > 0, f ∈ Hs and K is a kernel of order s. Then

|b(x)| ≤ C2h
s ,

where C2 = ∥f ∥Hs

1

ℓ!

∫
|u|s |K (u)|du.
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Kernels of high order

If K is even, that is K (u) = K (−u), then for each odd m∫
umK (u)du = 0.

The even m are more difficult. To have both
∫
K (u)du = 1 and∫

u2K (u)du = 0, the kernel must be negative in places.

These exist for every s > 0, and may be generated, for example, by
multiplying a gaussian by an even polynomial of order ℓ− 2.

Eg. K (u) =
3− u2

2

1√
2π

exp
(
−u2/2

)
is a kernel of order 4.
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Kernels of high order

Examples of fourth order kernels.
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Estimating the MSE

If s > 0, f ∈ Hs , K is a square-integrable kernel of order s, then

MSE(x) = σ2(x) + b2(x) ≤ C1

nh
+ C 2

2 h
2s

We see that hn = cn−q for any c > 0 and 0 < q < 1 will work.

This estimate is minimised by

h∗n =

(
C1

2sC 2
2

)1/(2s+1)

n−1/(2s+1).
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Theorem

Suppose s > 0, f ∈ Hs and K is a square-integrable kernel of order
s. Choose h = hn = n−1/(2s+1). Then there exists a constant
c = c(s,K , ∥f ∥Hs ) > 0 such that

MSE(x) ≤ Cn−2s/(2s+1),

for every x ∈ R and n ∈ N.

That is, under the assumption f ∈ Hs , we can attain a
convergence rate of R = 2s/(2s + 1).

Can we do better?

No! This is optimal.
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Recent Research

1 On what other geometric spaces can we perform
kernel density estimation?

A great many metric measure spaces! For example, any
Riemannian manifold of non-negative Ricci curvature. This
includes Rn, Sn, Bn and many more.

2 On such spaces, what convergence rates can we
reach?

On a d-dimensional space, we can attain a rate of
R = 2s/(2s + d) over the analagous Hölder space. This is as
good as on Euclidean space Rd !
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