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Suppose that f is a probability density function (pdf) over R.
That is, f : R — [0, 00) with /f(x)dx =1

Suppose that X = (Xi,---, X,) are independent random variables
identically distributed according to f.

If we do not have access to f, can we estimate it from the data X7

As n grows, can our estimates improve?
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In red: an example pdf.
Black circles: the data X, n = 50 numbers generated from f.
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Rosenblatt’'s estimator

Rosenblatt (1956) suggested the following estimator:
2 lul<1

Q Use K(u) = {2

~, the rectangular kernel.
0 otherwise

@ Choose a bandwidth h > 0. (Think of h as small.)
© Dilate K by h: Kp(u) := h=*K(u/h).

@ Centre a copy of K}, at each data point X; and average.

R 1<
Frta(x) = . > Kn(Xi — x)
i=1
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Rosenblatt’'s estimator

Same pdf f and data X as before. h = 0.95.
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Can we use a different kernel?

Yes! A function K : R — R with [ K(u)du =1, called a kernel,
will work. Some commonly used examples include:

Rectangle Epanechnikov Gaussian
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0.4
0.75 0.75
0.3
0.50 0.50 024
0.25 0.25 0.1
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-1 0 1 -1 0 1 -2 0 2
Triangle Biweight . Fourth order
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The choice of bandwidth

n = 500 data sampled from f. Clockwise from top left: true
density f, estimator f, , with h=0.3, h=3, h = 0.03.
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Bandwidth

We must carefully choose the bandwidth .

h too large leads to oversmoothing, large bias.

h too small leads to undersmooting, large variance.
We must choose a value between these extremes.

We expect that as n grows, the best choice for h will change. So,
we allow h to be a sequence h,. We anticipate h, 2700 .
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Kernel Density Estimators

@ Choose a kernel K.

@ Choose a bandwidth h = h, > 0.

© Dilate K by h: Ku(u) := h=*K(u/h).

@ Centre a copy of K}, at each data point X; and average.

N 1<
Fon(x) = - > Kn(Xi — x)
i=1

This is a kernel density estimator.
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Mean Squared Error

The Mean Squared Error is defined as

MSE(x) :=E (ﬁr,h(x) - f(X))2

= [ [ (Bt o) = () TT#0o)ds ).
[/ (Tt )

i=1

n—o00

We hope that MSE(x) —— 0.

In particular, we hope there exists some convergence rate R > 0
and constant ¢ > 0 such that for each x ¢ R, n € N

MSE(x) < cn™R.
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Bias and variance

The Mean Squared Error has a well-known decomposition
MSE(x) = b?(x) 4 ¢2(x),

where the bias is given by
b(x) := E (Fun(x)) — (),

and the variance is given by

o2(x) = E [(f(x) _E (1?,,7h(x)>>2] |
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Estimating the Variance

Proposition

Suppose f is bounded and K is square integrable. Then for every
x €R,neN and h >0,

C
2 <1
SOE

where C; = ||f||oo/K(u)2du.

n—oo

We want h, — 0, but this result tells us that cannot happen
too fast. In order for the variance to vanish as n — oo, we require

n—o00
nh ——— oc.
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Assumptions on f

Let 0 < a < 1. A function g : R — R is Holder a-continuous if
there exists some constant C > 0 such that for every x,y € R

lg(y) —8(x)| < Clx —y[%.

Let s > 0, ¢ = |s]| the greatest integer strictly less than s. An
£-times differentiable function f : R — R belongs to the Holder
space, H®, if

FO(y) = FOK)]
’S—Z

[£1l34s == [[f]lo + sup
x#y Iy - X

< 00
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Estimating the Bias

Using a Taylor expansion, where Ry(x, t) is the remainder term,

f(m

f(x—i—t—f(x)—i—z ) g + Re(x, t)

= f(x) (/ K(u)du — 1) - Ei f(:fx) hm/u’"K(U)du
m=1 ’
-l-/K(u)Rg(X, uh)du
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Estimating the Bias

A function K : R — R is a kernel of order s if it satisifes:

o /K(u)du:l
Q /umK(u)duzoforlgmgﬁstJ

QU/MﬂM@Mu<m

Suppose s > 0, f € H® and K is a kernel of order s. Then

|b(x)| < Gh°,

1
MmQ:MWEﬁWWMW.
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Kernels of high order

If K is even, that is K(u) = K(—u), then for each odd m
/umK(u)du = 0.

The even m are more difficult. To have both [ K(u)du =1 and
[ v?K(u)du = 0, the kernel must be negative in places.

These exist for every s > 0, and may be generated, for example, by
multiplying a gaussian by an even polynomial of order £ — 2.
33— w1

Eg. K(u) = 3 o exp (—u2/2) is a kernel of order 4.
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Kernels of high order

Examples of fourth order kernels.

Epanechnikov Gaussian
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Estimating the MSE

If s >0, f € H®, K is a square-integrable kernel of order s, then
C
MSE(x) = 0?(x) + b*(x) < 717 + C2h*
n
We see that h, = cn™9 for any ¢ > 0 and 0 < g < 1 will work.

This estimate is minimised by

peo (& Yt p1/(2s+1)
" 2sC2 '
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Theorem

Suppose s > 0, f € H® and K is a square-integrable kernel of order
s. Choose h = h, = n=Y/(2st1) " Then there exists a constant
c = c(s,K,||fllys) > 0 such that

MSE(X) < Cn725/(2s+1),

for every x € R and n € N.

That is, under the assumption f € H®, we can attain a
convergence rate of R = 2s/(2s + 1).

Can we do better?
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Theorem

Suppose s > 0, f € H® and K is a square-integrable kernel of order
s. Choose h = h, = n=Y/(2st1) " Then there exists a constant
c = c(s,K,||fllys) > 0 such that

MSE(X) < Cn725/(2s+1),

for every x € R and n € N.

That is, under the assumption f € H®, we can attain a
convergence rate of R = 2s/(2s + 1).

Can we do better?

No! This is optimal.
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Recent Research

@ On what other geometric spaces can we perform
kernel density estimation?

@ On such spaces, what convergence rates can we
reach?
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Recent Research

@ On what other geometric spaces can we perform
kernel density estimation?
A great many metric measure spaces! For example, any
Riemannian manifold of non-negative Ricci curvature. This
includes R", S”, B” and many more.

@ On such spaces, what convergence rates can we
reach?
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Recent Research

@ On what other geometric spaces can we perform
kernel density estimation?
A great many metric measure spaces! For example, any
Riemannian manifold of non-negative Ricci curvature. This
includes R", S”, B” and many more.

@ On such spaces, what convergence rates can we
reach?
On a d-dimensional space, we can attain a rate of
R = 2s/(2s + d) over the analagous Hélder space. This is as
good as on Euclidean space RY!
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