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Figure 1: Expansion of the Universe

Abstract

The aim of this project is to investigate the expansion of the early universe
in the case of an absence of spatial curvature. We primarily focus on cases
where inflation occurs during expansion using the Klein-Gordon equation and
the Friedman Equation. We does this by solving these equations using numerical
methods.
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1 Background

The pursuit of an accurate model of our universe has been a constant point of
interest throughout the past century and still is to this day. There are many
different models that have been constructed in attempts to describe our universe
and its origin. Most of these models arose after Einstein published his paper
on his gravitational field equations in 1915 and from his paper on General Rel-
ativity published in 1916. Einstein himself introduced a cosmological constant
that allowed for a static solution (a solution in which the universe is neither
expanding or contracting). Following this many other scientists attempted to
create other cosmological constants for different solutions. One such scientist
was Alexander Friedman who in 1922 mathematically predicted the expansion
of the universe [3]. The main source of evidence that supported the claim of
an expanding universe would be Edwin Hubble’s paper released in 1929 which
investigated the relationship between Redshift and distance [2]. It was not until
the 1980s with theoretical developments which led to the creation of accurate
models describing cosmic inflation. During a period of inflation the metric de-
scribing the system would change exponentially as the system expands at an
exponential rate.

2 Introduction

The chaotic inflationary model is one of the simplest models of the inflationary
universe as it does not take into account spatial curvature. The equations
describing the evolution of the early Universe dominated by a scalar field in the
absence of spatial curvature can be written in the form.

H =
ȧ

a
= [

8π

3M2
p

(
ϕ̇

2
+ V (ϕ))]

1
2

This is the Friedman equation and is one of the two equations we will primarily
work with. The other equation we primarily use is the Klein Gordon Equation.

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0

. These equations are written using natural units where Mp is the Planck Mass
and Tp is the Planck time. Our choice of the scalar field is as follows:

V (ϕ) =
1

2
m2ϕ2

where m is the mass associated with the scalar field. The primary aim is to
obtain the cosmic scale factor a(t) which describes the changing distance be-
tween two points as the Universe expands. In particular we have exponential
expansion when log(a) is progressing linearly. In this report we will investigate
the effects of different initial conditions for the Klein-Gordon equation and the
Friedman equation to obtain scenarios in which the universe undergoes expo-
nential expansion.
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3 Basic Equations and Model

Recall the Friedman equation:

H =
ȧ

a
= (

8π

3M2
p

[
ϕ̇

2
+ V (ϕ)])

1
2

And the Klein-Gordon equation:

ϕ̈+ 3Hϕ̇+
dv

dϕ
= 0

From eq.1 we get the following

H =
ȧ

a
=

dlog(a)

dt

from here we can rewrite the two ODEs in the form

dlog(a)

dt
= ((

8π

3M2
p

(
ϕ̇

2
+ V (ϕ)))

1
2 )

ϕ̈ = −(3Hϕ̇+
dV

dϕ
)

ϕ̈ =
dϕ̇

dt

Interestingly we will see for a large number of initial conditions and a scalar
potential V (ϕ) = 1

2m
2ϕ2

H =
d log a

dτ
∼= constant

for t ≫ tp from here we can approximate the Klein-Gordon equations as a
damped harmonic oscillator:

mẍ+ bẋ+ kx −→ ϕ̈+ 3Hϕ̇+m2ϕ = 0

for a solution : ϕ(t) = Ae−λt cos(ωt) with ω =
√
m2 − 3H2

4 and λ = 3H
2 at

t = tp A = ϕ0 with a frequency ω = 2πf → 1
2π

√
m2 − 9H2

4 if

9H2 ≫ 4m2 −→ overdamped

9H2 < 4m2 −→ underdamped

9H2 = 4m2 −→ critallydamped

ϕ(t) = ϕ0e
− 3H

2 t cos(

√
m2 − 3H2

4
t)
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4 Exploration of initial conditions

Next we shall consider what types of initial conditions are particularly interest-
ing or illuminating.

4.1 ϕ̇0 = 0 and the Effect of ϕ on Early Expansion

Let us consider the a field with a massive scalar potential V (ϕ) = 1
2m

2ϕ2. This
yields the following equations.

ϕ̈+ 3Hϕ̇+m2ϕ = 0

H = (
4π

3M2
p

[ϕ̇2 +m2ϕ2])
1
2

from here we can fix ϕ̇0 = 0 which gives H0 = (
4πm2ϕ2

0

3M2
p

)
1
2 → H0 ∝ ϕ0 is

always positive, however ϕ̈0 = −M2ϕ0 depends on the sign of ϕ0 . We define
ϕ0 ∈ I = {−i, i} a specific interval which after tp × 106 generates the following
graph ( assuming V (ϕ) = 1

2m
2ϕ2 and m = Mp × 10−5)

Figure 2: e-folds for V (ϕ). m = 0.05Mp

Notice that provided |ϕ0| > 3, we get sufficient inflation. Anything under this
and we enter the oscillating phase too soon. So we can easily conclude that even
restricting ourselves to ϕ̇ = 0 we can still achieve sufficient inflation.
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4.2 Fixed H0 = Mp

Next we assume H0 = Mp which for a given ϕ0 fixes ϕ̇0 up to a sign. In

particular let ϕ̇0 = α cos(k) and mϕ0 = α sin(k). combing this with eq gives:

H0 = Mp = (
4π

3M2
p

(α2 cos2(k) + α2 sin2(k)))
1
2 =

√
4π

3M2
p

α2

α = M2
p

√
(
3

4π
)

Now we can consider the circle k ∈ (−π, π] with initial conditions

Xo = [0, α sin(k)
m , α cos(k)] = [log(a), ϕ̇0,mϕ0]. Graphed below is a system which

expands in polar coordinates with z-axis depicting spatial expansion, radial
expansion corresponds to passage of time and the angle determines the initial
conditions, beside it is the same system but ”unravelled” so that the appropriate
angle is described on the x-axis.

Figure 3: effect of angle k with H0

There is a clear positive relation between the size of ϕ = α sin(k) and a rapid
spurt of early expansion. However the time interval in figure 3 is too short to
see if this would have an significant impact over longer timescale, instead we
should look at the graph 4.23.

We can go even further and consider the disc H0 ≤ Mp in the input space

mϕ0, ϕ̇ after some specific time T. If we graph the e-folds of inflation against
this disc corresponding to inputs in the range H0 ≤ Mp, with our axis in terms

of mϕ0,
dϕ
dt and expansion after T.

Traversing along the ϕ̇ axis, we retrieve the graph in index 4.21. Traversing
along the mϕ axis, we should retrieve the graph in index 4.22, though that isn’t
clear from the above image. Traversing along the circumference of this disc, we
recover the graph 4.23. Overall, for a fixed value of H0, the amount of inflation
underwent by the system seems to be far more sensitive to a change in ϕ0 than
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a change in ϕ̇, we postulate that this is due to the damping term in the Klein-
Gordon equation 3Hϕ̇ which for large values of ϕ̇ exerts a powerful viscous effect
on the initial expansion. Furthermore we can say that for H0 ≤ Mp, achieving
sufficient inflation is very likely for values of k ∈ (−π, π].

Figure 4: Figures 4.20-4.23 arranged clockwise from top left

4.3 General H0

If we now consider how varying the initial value H0 , we introduce two new
degrees for freedom specifically in terms of ϕ and ϕ̇. Below in the graph we
see how this effects inflation. Interestingly, for very small values of ϕ, ϕ̇, we
see that inflation is far more dependent on the initial velocity than the initial
position. Perhaps this is because at such small values, H is very small, and so
the damping the system feels is very small, allowing the system to move higher
up the potential, before inflating on its way down. Yet for the scales at which
ϕ̇p is more important, we see that the system does not experience sufficient
inflation.

As we zoom out, we notice a diagonal valley appear, along inputs whose sign
differ. This valley represents the initial conditions that send the system deep
into the potential very early, so that the oscillating phase is entered very early
and little inflation is felt.

As we zoom out more, we notice that ϕ becomes the stronger of the two
initial conditions. It is around this scale that some initial conditions are meeting
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sufficient inflation in the given time-frame.
Zooming out to the scale that fits the curve Hp = Mp, we notice that ϕ is

completely dominating. However, we also notice that if we move along the ϕ̇
axis, as ϕ increases, and so H increases, the inflation increases linearly. This is
a symptom of the fact that these systems are still in their inflation stages, and
log(a) is increasing linearly with time with almost the initial value of H. Eg.
Look at the point maximum ϕ, on the ϕ̇ axis. Here Hp = Mp while ϕ is very
large. As ϕ is very large, the system remains high in the potential for a very
long time. On its slow climb down the potential however, H remains very close
to Mp, and so log(a) increases linearly, corresponding to exponential inflation
for an exaggerated period of time. If we were to run these systems for much
longer we should expect to see a different shape in our final graph. We expect
that specific example to reach 1.5× 1010 e-folds of inflation.

Figure 5: effect of angle k on ϕ (left image) and Hubble constant (right image)
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4.4 Impact of mass m

Another variable with which we can tinker with is the mass m of the scalar
field potential. In fact we can consider how a range of masses would effect the
evolution of our system. i.em ∈ [0, 50×Mp] = I which for some initial conditions
would produce a graph in the form of Figure 5. In general the presence of
higher mass accelerates the evolution of the system inducing a rapid oscillation
of the Klein-Gordon terms. For greater values of m the system experiences
prolonged acceleration. Compared to initial conditions the mass of the scalar
field continues to exert it’s influence long after the initial burst of inflation.
These influences include the frequency of the Klein-Gordon terms and Hubble
constant as well as determining the rate of latter expansion . We examine the
effect of mass over 10000tp with the following initial conditions over the range
(0, 50Mp). Observe that near m = 0 a small change in mass causes a large
discrepancy in the final states of the system. We can also examine a much
smaller mass range between (0, 1e−7) over a far longer period of time ,1×108tp
: We also noticed that in general larger values of m are more computationally
intensive

Figure 6: effect of mass on expansion
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5 The Chaotic interplay of the Klein-Gordon
terms

Figure 7: initial conditions X0 = [H0 = 1,ϕ0 = 1,ϕ̇0 = ϕ−]

ϕ̇− =

√
H2

0
3M2

p

4π − 2V (ϕ)
An evaluation of the interaction of the respective terms of the Klein-Gordon

equation : ϕ̈, 3Hϕ̇, m2ϕ.If we consider the system described by

ϕ̈+ 3Hϕ̇+m2ϕ = 0

initially our system undergoes a substantial damping effect induced by the vis-
cosity of the 3Hϕ̇ term which in turn slows down the rate of expansion of the

universe inducing a rapid erosion of H = d log(a)
dt to a stable but small constant.

Indeed in the above illustrated case with m = Mpe − 5 this occurs after 1e6
plank times. Since H is roughly constant the frequency of the m2ϕ terms is :

f =
1

2π

√
m2 − 3H2

4
≈ 1

2π

√
m2 ∝ m

for a sufficiently small H. It also holds for sufficiently negligible H that:

ϕ(t) = ϕ0e
− 3H

2 t cos(

√
m2 − 3H2

4
t) ≈ ϕ0 cos(m)

and therefore
ϕ̈(t) ∝ cos(m)
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and
ϕ̇ ∝ sin(m)

and thus have roughly the same frequency as ϕ for small values of H. The
affect of mass on the frequency of the Klein-Gordon terms, specifically ϕ̈, is
illustrated in the diagram below which varies in mass from 0 −→ Mp

2 over
tp × 100 with darking of blue en-coding the respective increase in mass in the
graph below. From the graph we can see that the frequency of the oscillation is
indeed proportional to the mass of the field.

We can conclude from this that the undulation of the Klein-Gordon terms
depends acutely on the mass of the potential V (ϕ). The larger value of m not
only corresponds to a greater frequency in the latter oscillation of the Klein-
Gordon terms but also hastens the decay of H, quickening the arrival of this
under-damped harmonic phase. We can exploit this knowledge to save com-
putationally resources by approximating how the Klein-Gordon terms act for
large timescales and small masses by examining shorter time frames with larger
masses in the potential. We can investigate how how initial conditions effect
their evolution by considering how the Klein-Gordon terms act with the follow-

ing initial conditions: Xo = [0, α sin(k)
m , α cos(k)] , mass = Mp over 10× tp.

Figure 8: effect of angle k on ϕ (left image) and Hubble constant (right image)

(changing colour : cool−→warm encapsulates changing angle −π −→ π)
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Figure 9: effect of mass on ϕ̈

6 Reproducibility and comparison of model to
prior papers

In order to probe the validity of our model we investigated prior papers on
chaotic inflation that existed in the literature. Primarily we consulted a 1988
paper, [1], titled ”Chaotic Inflation” by Mark S.Madsen and Peter Coles with
the specific intention of replicating their graphs for initial conditions ϕ0 = 1 and
H0 = Mp. To do this we must evaluate ϕ̇0 given ϕ0. Substituting ϕ0 into the
Friedman equations produces:

Hp =

√
8π

3M2
p

√
1

2
ϕ̇2
0 + V (ϕ0)

Rearranging gives :

ϕ̇2
0 = (H2

p

3M2
p

4π
)− 2V (ϕ0).

which yields to us a positive and negative value for ϕ̇0. As in accordance with
the 1988 paper we assume V (m,ϕ) = 1

2m
2ϕ2 and m = 1

105Mp and graph these
choices for 3 · 106tp.

The positive choice produces:
The negative choice produces:
These are indeed remarkably similar to the 1988 paper. However there were

problems with these results as originally in the project brief we were provided
with the Klein-Gordon equation as

H =
8π

3M2
p

(
1

2
ϕ̈2 +

1

2
m2ϕ2)

1
2

which gave us that the time axis appear to have contracted by approximately
a factor of 3. Upon delving into the relevant literature we discovered that the
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Figure 10: e-fold expansion and Klein-Gordon For positive ϕ0

Figure 11: e-fold expansion and Klein-Gordon For negative ϕ0

Klein-Gordon equation provided was incorrect. The correct equation is given
as follows:

H = [
8π

3M2
p

(
1

2
ϕ̈2 + V (ϕ))]

1
2

This then gave us results that coincided with 1988 paper.
In relation to the dynamics we see in both graphs we see an initial period,

the first three spikes in the Klein-Gordon graphs, that are as a result of the effect
the initial value of ϕ̇. The strong viscous damping term 3Hϕ quickly annihilates
this initial ϕ̇. Then we have a period of inflation as ϕ decays, approximately as
an over-damped oscillator. It is in this period that log(a) has sustained linear
growth, corresponding to exponential growth of the Cosmic Scale Factor a. The
third phase such that as ϕ reaches the bottom of the potential, the damping term
becomes weaker, allowing ϕ to oscillate about the bottom of the potential well,
approximately as an under-damped oscillator. This is evidenced by the series
of spikes in the Klein-Gordon terms ϕ, ϕ̇, ϕ̈ corresponding to each of repeatedly
crossing zero. The majority of inflation in both scenarios occurred during. Nei-
ther scenario achieved the condition of ”sufficient inflation” as neither achieved
60 e-folds of inflation.
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7 Exploration Of Different Potentials

Now we shall consider the effect of different field potentials on the evolution of
the Universe. Firstly we will note that

cos(x) = 1 +
1

2
x2 − 1

24
x4 + ...

therefore

m2(cos(ϕ)− 1) = m2(
1

2
ϕ2 − 1

24
ϕ4 + ...) ≈ 1

2
m2ϕ2

Hence we would expect that for small values of ϕ we would expect that Vc =
m2(cos(ϕ) − 1) ≈ Vm = 1

2m
2ϕ2 and that as we approach inflection at ϕ− = π

2
the potential would gradually diverge, becoming completely different by first
turning point at ϕ=π. Due to the undulating nature of Vc we expect to produce
periodic crests and valleys when we plot the varying expansion rate of different
initial ϕ0. Indeed setting ϕ̇0 = 0 generates the following after 3 × 106tp for Vc

as compared to what Vm produces.

Figure 12: Vc (Left) and Vm (Right)

Note that phi equals ±π should experience indefinite constant exponential
inflation
We can compare the potentials Vc and Vm over the input space ϕ̇ and ϕ after
time t = tp × 107.

This potential allows us to explore how the system behaves with a local
maximum in a potential. Placing ϕ in the region of a local maximum, with a
small ˙phi, doing so causes the Hubble Parameter to have a relatively large value.
This will act against ϕ̇ increase due to the slope of the potential, which will be
small anyway. This means that ϕ will remain near the maximum for a sustained
period of time, causing H to be near that original value for a sustained period of
time. Thus the system experiences a sustained period of inflation. The amount
of inflation depends on the size of the local maxima.

We expect something similar to happen in a false minimum, or with a non-
zero ground state. Take the potential

Vϵ =
1

2
m2ϕ2 + ϵ
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Figure 13: 3D graphs of potentials Vc (Left) and Vm (Right) over the input
space ϕ, ϕ̇

which is a modified version of the standard potential.We should expect that
even when the system has ϕ at a potential minimum and ϕ̇ is zero.

H =

√
8π

3M2
p

ϵ =
d

dτ
log(a)

and thus

a(t) = exp(

√
8π

3M2
p

ϵt)

Therefore we would expect inflation even from initial conditions where ϕ =
ϕ̇ = 0. If we consider the graph of inflation generated after T = 3 × 106tp for
some ϵ = 0.25m2 we see that sufficient inflation is achieved in all but ϕ ∈ (−2, 2)
even with ϕ̇0 = 0. By comparing to the graph of the standard potential, we see
that this graph has been raised by just over 40 e-folds of inflation.

Figure 14: Graph of Vϵ(ϕ) (Left) and Vm(ϕ) (Right)
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8 Explanation of Code

Our programme is designed to compute the evolution of a universe with no
spatial curvature as described by the Friedman and Klein-Gordon equations.
Importantly for our computation we rewrite them as in figure 3 :

d log ȧ

dτ
= (

8π

3M2
p

[
ϕ̇

2
+ V (ϕ)])

1
2

ϕ̈ = −(3Hϕ̇+
dV

dϕ̇
)

ϕ̈ = (
dϕ̇

dτ
)

If we consider the scalar potential to be

V (ϕ) =
1

2
m2ϕ2

there are a number of different ways we can go about solving the equations
numerically. From SciPy.integrate we imported odeint which we used to solve
the relevant ODEs. Our primary function is ”chaos” which computes the evolu-
tion of the universe for a given set of initial conditions and scalar field potential.

Taken together these 4 sections of code below provide a robust foundation for
which to compute the various plots and graphs which illustrate this report. It
is however pertinent to address the limitations of this programme before con-
cluding;
firstly in the pursuit of a general function capable of dealing with a variety of
potentials we had to sacrifice the efficiency that simpler programme would have
provided.
Secondly since the derivative of V(ϕ) is calculated symbolically from sympy
it requires an input potential to be sympy-defined which reduces slightly the
generality of the programme.

9 Further Research

Areas of further research include expanding our model to accommodate spatial
curvature and quantum mechanic effects. If you have potential with which has
a false minimum, the system will inflate for a period but then may the system
will decay to period oscillation and

10 Conclusion

The chaotic inflationary model of the expansion of the universe is interesting
from a theoretical point of view, even using simple models help gives us a grasp
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of the dynamics of the expansion and how various terms in the equations affect
the dynamics. Throughout the course of this project we developed a set of
computational methods that would help solve these systems. While our main
focus was on chaotic inflation using a standard scalar potential V (ϕ) = 1

2m
2ϕ2 in

the absence of spatial curvature, the methods we developed, as we have shown,
can be used to describe system with more complex potentials and in the future,
systems where spatial curvature is present. We have shown that there many
ways to achieve suitable inflation, such as in the case of ϕ0. Some of the initial
conditions which give rise to inflation such as cases with sufficiently large ϕ,
sufficiently large ϕ, potentials with a non-zero minimum, system with a large
mass associated with the scalar potential.
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(Note Latex doesnt recognise the symbol representing phi, so in the latex
code it is present, but in the printed python section it is not)

1

2 """

3 Defining the ’chaos’ function and its pre -requisites

4 Throughout {x, y, z, La , fp} denote { , d /dt, d^ /dt^2, log(a),

f(tp)}

5 Vs is a sympy -defined version of a potential V(m, )

6 """

7 import numpy as np

8 import sympy as sp

9 from scipy.integrate import odeint

10

11 #rename a common constant c=sqrt(8 /3Mp^2)

12 c = np.sqrt(np.pi*8/3)

13 #standard mass

14 m0 = 10** -5

15

16 def chaos(m, Vs, xp, yp , T, dt):

17 """

18 ----------

19 m : constant associated with V

20 Vs : V(m, ), a non -negative sympy function

21 xp : (tp), the initial value of the scalar field

22 yp : d /dt(tp), the intial value of the derivative of the

scalar field

23 T : >1 Simulation end time , in tp

24 dt : >0 Timestep increment , in tp

25 ----------

26 Uses odeint to solve the ODE IVP

27 given by xp , yp , and the Friedmann and Klein -Gordon equations

28 and returns an array of [ , d /dt, log(a)] over time.

29 The log( a(T) ) is referred to as the e-fold number ,

30 the number of times the Cosmic Scale Factor

31 increased by a factor of e.

32 It is the entry [ -1][2] of the chaos output.

33 ----------

34 """

35 def deriv(u, t):

36 return DERIV(Vs , m, u, t)

37

38 t = np.arange(1, T+dt, dt)

39 #time axis over which to evaluate

40 Lap = 0.0

41 #ap=1, so Lap=log(ap)=0

42 up = [xp, yp, Lap]

43 #initial vector u = [ , d /dt, log(a)]

44

45 U = odeint(deriv , up, t)

46 #solve the IVP

47 return U

48

49

50

51

52

53 def DERIV(Vs, m, u, t):
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54 """

55 ----------

56 m : constant associated with V

57 Vs : V(m, ), a non -negative sympy function

58 u : [ , d /dt , log(a)]

59 t : time axis over which to evaluate

60 ----------

61 Returns [ d /dt, d^2 /dt^2, d(log(a))/dt]

62 Calculated according to the Friedman and Klein -Gordon equations

63 ----------

64 """

65 def V(m, x):

66 return float( Vs(m, x) )

67 #returns a float answer of Vs

68 #behaves better inside other functions

69

70 h = Hubble(m, V, u[0], u[1])

71 #Friedmann

72 y = u[1]

73 #simply the derivative

74 z = -3.0*h*(u[1]) - d V d (Vs , m, u[0])

75 #Klein -Gordon

76 return [y, z, h]

77

78

79

80 def Hubble(m, V, x, y):

81 """

82 ----------

83 m : m constant associated with V

84 V : V(m, ) a non -negative function , the potential

85 x : the value of the scalar field

86 y : d /dt the value of the derivative of the scalar

field

87 ----------

88 Returns the Hubble parameter

89 Defined as sqrt( (8 /3Mp^2) *(1/2 *( d /dt)^2 + V(m, )))

90 """

91 h = c*( ( 0.5*(y**2) + V(m, x) )**0.5 )

92 #from Friedmann

93 return h

94

95

96

97 def d V d (Vs, m, x):

98 """

99 ----------

100 m : m constant associated with V

101 Vs : V(m, ) a non -negative sympy function

102 x : the value of the scalar field

103 ----------

104 Returns the derivative of V(m, ) with respect to

105 Calculated symbolically using sympy

106 This is the reason that we request a sympy -defined V

107 ----------

108 """

109 pot = Vs(m, sp.symbols(’ ’))
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110 #creates a symbolic version of the functionV(m, )

111 dpot = sp.diff(pot , sp.symbols(’ ’))

112 #differenciate this symbolic function wrt

113 f = sp.lambdify(sp.symbols(’ ’), dpot)

114 #turn the derivative into a numeric function

115 #now return evaluated at x

116 return f(x)

1 """

2 Defining functions based on ’chaos ’,

3 to plot e-folds of inflation against initial conditions

4 Throughout {x, y, z, La , fp} denote { , d /dt, d^ /dt^2, log(a),

f(tp)} respectively

5 Vs is a sympy -defined version of a potential V(m, )

6 """

7 import matplotlib.pyplot as plt

8 import numpy as np

9 import sympy as sp

10 from scipy.integrate import odeint

11 from Project_chaos import chaos , Hubble , d V d

12 from Project_helper_functions import phidotp , phip , Vm

13

14 #rename a common constant c=sqrt(8 /3Mp^2)

15 c = np.sqrt(np.pi*8/3)

16 #standard mass

17 m0 = 10** -5

18 #the positive value of d /dtp such that H( p =1, d /dtp)=Mp

19 #used for testing against the 1988 graphs

20 y0 = phidotp(m=m0 , Vs=Vm, xp=1.0, hp=1.0)

21 #R1 is the radius of the ’circle ’ of solutions { p , d /dtp}

22 #such that Hp=Mp

23 R1 = ( (3/4) * (1/np.pi) )**0.5

24

25

26 def BP1(m, Vs , yp, xmin , xmax , dx, T, dt):

27 """

28 ----------

29 m : constant associated with V

30 Vs : V(m, ), a non -negative sympy -defined function

31 yp : d /dt(tp), the intial value of the derivative of the

scalar field

32 xmin : minimum value of (tp) to be tested

33 xmax : maximum value of (tp) to be tested

34 dx : increment between test values of (tp)

35 T : >0 Simulation end time , in tp

36 dt : >0 Timestep increment , in tp

37 ----------

38 Runs ’chaos ’ for each (tp) in arange[xmin , xmax+dx, dx]

39 Plots the e-fold number as a function of (tp)

40 ----------

41 """

42 #define the choices of (tp) to test

43 X = np.arange(xmin , xmax+dx , dx)

44

45 #for each initial condition , solve the ODE with ’chaos ’

46 Z = np.zeros(len(X))

47 for i in range(len(X)):

48 Z[i] = chaos(m, Vs , X[i], yp , T, dt)[ -1][2]
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49

50 #graph e-folds , over time

51 plt.figure ()

52 plt.xlabel(’ (tp)’)

53 plt.ylabel(’e-folds of inflation ’)

54 plt.plot(X, Z)

55

56 #define the sufficient inflation to graph

57 si= np.zeros(len(X))

58 si= si+60

59 plt.plot(X, si , label=str(’sufficient inflation ’))

60 plt.legend(loc=2)

61 return

62

63

64 def AntiBP1(m, Vs , xp , ymin , ymax , dy, T, dt):

65 """

66 ----------

67 m : constant associated with V

68 Vs : V(m, ), a non -negative sympy function

69 xp : d /dt(tp), the intial value of the derivative of the

scalar field

70 ymin : minimum value of d /dt(tp) to be tested

71 ymax : maximum value of d /dt(tp) to be tested

72 dy : increment between test values of d /dt(tp)

73 T : >0 Simulation end time , in tp

74 dt : >0 Timestep increment , in tp

75 ----------

76 Runs ’chaos ’ for each d /dt(tp) in arange[ymin , ymax , dy]

77 Plots the inflation as a function of d /dt(tp)

78 ----------

79 """

80 #define the choices of d /dt (tp) to test

81 Y = np.arange(ymin , ymax+dy , dy)

82

83 #for each initial condition , solve the ODE with ’chaos ’

84 Z = np.zeros(len(Y))

85 for i in range(len(Y)):

86 Z[i] = chaos(m, Vs , xp, Y[i], T, dt)[ -1][2]

87

88 #graph e-folds , over time

89 plt.figure ()

90 plt.xlabel(’ d /dt(tp)’)

91 plt.ylabel(’e-folds of inflation ’)

92 plt.plot(Y, Z)

93

94 #define the sufficient inflation to graph

95 si= np.zeros(len(Y))

96 si= si+60

97 plt.plot(Y, si , label=str(’sufficient inflation ’))

98 plt.legend(loc=2)

99 return

100

101

102 def circumference(m, hp, dtheta , T, dt):

103 """

104 ----------
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105 m : constant associated with V

106 hp : H(tp), >0 the initial value of the Hubble parameter

107 dtheta : >0 increment of Theta along the circle

108 T : >1 Simulation end time , in tp

109 dt : >0 Timestep increment , in tp

110 ----------

111 Assumes the standard massive potential Vm(m, )= 0.5 m^2 ^2

112 Runs chaos on pairs of inputs ( (tp) , d /dt(tp))

113 that lie on the circular solution curve to:

114 hp = H(xp, yp) = sqrt(8 /3Mp^2)*sqrt (0.5*y^2 + V(m, xp))

115 which is the circle:

116 ( d /dt(tp) )^2 + ( m* (tp) )^2 = ( hp/ sqrt (2)*c )^2

117 Graphs the e-folds underwent in T,

118 over the circumference of this circle

119 """

120 #define the choices of Theta

121 Theta = np.arange (0.0, 2*np.pi + dtheta , dtheta)

122

123 #radius of this ’circle ’

124 R = (2**0.5)*hp/c

125

126 #for each initial condition , solve the ODE with ’chaos ’

127 E = np.zeros(len(Theta))

128 for i in range(len(Theta)):

129 x = R*np.cos( Theta[i] )/m

130 y = R*np.sin( Theta[i] )

131 E[i] = chaos(m, Vm , x, y, T, dt)[ -1][2]

132

133 #graph e-folds , over time

134 plt.figure ()

135 plt.xlabel(’Angle ’)

136 plt.ylabel(’e-folds of inflation ’)

137 plt.plot(Theta , E)

138

139 #define the sufficient inflation to graph

140 si = np.zeros(len(Theta))

141 si = si + 60

142 plt.plot(Theta , si , label=str(’sufficient inflation ’))

143 plt.legend(loc=8)

144 return

145

146

147

148 def BP1_M(M, Vs, yp, xmin , xmax , dx , T, dt):

149 """

150 ----------

151 M : array of constants associated with V

152 Vs : V(m, ), a non -negative sympy -defined function

153 yp : d /dt(tp), the intial value of the derivative of the

scalar field

154 xmin : minimum value of (tp) to be tested

155 xmax : maximum value of (tp) to be tested

156 dx : increment between test values of (tp)

157 T : >1 Simulation end time , in tp

158 dt : >0 Timestep increment , in tp

159 ----------

160 Runs ’chaos ’ for each (tp) in arange[xmin , xmax+dx, dx]
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161 and for each m in M, witu d /dt(tp) fixed

162 Plots the inflation as a function of (tp)

163 ----------

164 """

165 #define the choices of (tp) to test

166 X = np.arange(xmin , xmax+dx , dx)

167

168 #set up graph

169 plt.figure ()

170 plt.xlabel(’ (tp)’)

171 plt.ylabel(’e-folds of inflation ’)

172

173 #for each choice of m,

174 #for each choice of (tp),

175 #evaluate the number of e-folds acheived

176 #then plot against the choice of (tp),

177 #labelled with the choice of m

178 Z = np.zeros(len(X))

179 for i in range(len(M)):

180 for j in range(len(X)):

181 Z[j] = chaos(M[i], Vs, X[j], yp, T, dt)[ -1][2]

182 plt.plot(X, Z, label=str(’m=’+str(M[i])))

183

184 #now define the sufficient inflation to graph

185 si = np.zeros(len(X))

186 si = si + 60

187 plt.plot(X, si , label=str(’sufficient inflation ’))

188 plt.legend(loc=1)

189 #loc=best is slow with large data volume

190 return

191

192

193 def AntiBP1_M(M, Vs, xp, ymin , ymax , dy , T, dt):

194 """

195 ----------

196 M : array of constants associated with V

197 Vs : V(m, ), a non -negative sympy -defined function

198 xp : (tp), the intial value of the scalar field

199 ymin : minimum value of d /dt(tp) to be tested

200 ymax : maximum value of d /dt(tp) to be tested

201 dy : increment between test values of d /dt(tp)

202 T : >1 Simulation end time , in tp

203 dt : >0 Timestep increment , in tp

204 ----------

205 Runs ’chaos ’ for each d /dt(tp) in arange[ymin , ymax+dy , dy]

206 and for each m in M, with (tp) fixed

207 Plots the inflation as a function of d /dt(tp)

208 ----------

209 """

210 #define the choices of d /dt(tp) to test

211 Y = np.arange(ymin , ymax+dy , dy)

212

213 #set up graph

214 plt.figure ()

215 plt.xlabel(’ (tp)’)

216 plt.ylabel(’e-folds of inflation ’)

217

22



218 #for each choice of m,

219 #for each choice of d /dt(tp),

220 #evaluate the number of e-folds acheived

221 #then plot against the choice of d /dt(tp),

222 #labelled with the choice of m

223 Z = np.zeros(len(Y))

224 for i in range(len(M)):

225 for j in range(len(Y)):

226 Z[j] = chaos(M[i], Vs, xp, Y[j], T, dt)[ -1][2]

227 plt.plot(Y, Z, label=str(’m=’+str(M[i])))

228

229 #now define the sufficient inflation to graph

230 si = np.zeros(len(Y))

231 si = si + 60

232 plt.plot(Y, si , label=str(’sufficient inflation ’))

233 plt.legend(loc=1)

234 #loc=best is slow with large data volume

235 return

236

237

238 def circumference_M(M, hp, dtheta , T, dt):

239 """

240 ----------

241 M : an array of constants associated with V

242 hp : H(tp), >0 the initial value of the Hubble parameter

243 dtheta : the increment of Theta along the circle

244 T : >1 Simulation end time , in tp

245 dt : >0 Timestep increment , in tp

246 ----------

247 Assumes the standard massive potential Vm(m, )= 0.5 m^2 ^2

248 For each m in M

249 Runs chaos on pairs of inputs ( (tp) , d /dt(tp))

250 that lie on the circular solution curve to:

251 hp = H(xp, yp) = sqrt(8 /3Mp^2)*sqrt (0.5*y^2 + V(m, xp))

252 which is the circle:

253 ( d /dt(tp) )^2 + ( m* (tp) )^2 = ( hp/ sqrt (2)*c )^2

254 For each m in M, graphs the inflation underwent in T,

255 over the circumference of this circle

256 """

257 #define the choices of Theta

258 Theta = np.arange (0.0, 2*np.pi + dtheta , dtheta)

259

260 #radius of this ’circle ’

261 R = (2**0.5)*hp/c

262

263 #set up graph

264 plt.figure ()

265 plt.xlabel(’Angle ’)

266 plt.ylabel(’e-folds of inflation ’)

267

268 #for each choice of m,

269 #for each choice of Theta ,

270 #evaluate the number of e-folds acheived

271 #then plot against the choice of Theta ,

272 #labelled with the choice of m

273 E = np.zeros(len(Theta))

274 for j in range(len(M)):
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275 for i in range(len(Theta)):

276 x = R*np.cos( Theta[i] )/M[j]

277 y = R*np.sin( Theta[i] )

278 E[i] = chaos(M[j], Vm, x, y, T, dt)[ -1][2]

279 plt.plot(Theta , E, label=str(’m=’)+str(M[j]))

280

281 #define the sufficient inflation to graph

282 si = np.zeros(len(Theta))

283 si = si + 60

284 plt.plot(Theta , si , label=str(’sufficient inflation ’))

285 plt.legend(loc=8)

286 return

1

2

3

4 (3D graphs)

5

6 """

7 Defining functions based on ’chaos ’,

8 to plot the e-folds of inflation

9 against initial conditions a 2d input space

10 Throughout {x, y, z, La , fp} denote { , d /dt, d^ /dt^2, log(a),

f(tp)} respectively

11 Vs is a sympy -defined version of a potential V(m, )

12 """

13 import matplotlib.pyplot as plt

14 import numpy as np

15 import sympy as sp

16 from scipy.integrate import odeint

17 from Project_chaos import chaos , Hubble , d V d

18 from Project_helper_functions import phidotp , phip , Vm

19

20 #rename a common constant c=sqrt(8 /3Mp^2)

21 c = np.sqrt(np.pi*8/3)

22 #standard mass

23 m0 = 10** -5

24 #the positive value of d /dtp such that H( p =1, d /dtp)=Mp

25 #used for testing against the 1988 graphs

26 y0 = phidotp(m=m0 , Vs=Vm, xp=1.0, hp=1.0)

27 #R1 is the radius of the ’circle ’ of solutions { p , d /dtp}

28 #such that Hp=Mp

29 R1 = ( (3/4) * (1/np.pi) )**0.5

30

31

32 def graph_3d_Vm(m, hp, T, dt , dr , dtheta):

33 """

34 ----------

35 m : constant associated with V

36 hp : >0, initial value of the Hubble Parameter

37 T : >1 Simulation end time , in tp

38 dt : >0 Timestep increment , in tp

39 dr : >0 increment of r

40 dtheta : >0 increment of theta

41 ----------

42 Assumes V(m, ) = Vm(m, ) = 1/2 m^2 ^2

43 Returns a 3-d graph of the e-fold number

44 over the initial conditons [ p , d /dtp]
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45 such that H(tp) <= hp ,

46 a circle in the input space [ m p , d /dtp]

47 ----------

48 """

49 fig = plt.figure ()

50 ax = fig.add_subplot(projection=’3d’)

51

52 # Create the mesh in polar coordinates and compute

corresponding Z.

53 r = np.arange(0, hp *(3/(4* np.pi))**0.5 + dr , dr)

54 p = np.arange(0, 2*np.pi+ dtheta , dtheta)

55 R, P = np.meshgrid(r, p)

56 # Express the mesh in the cartesian system.

57 X, Y = R*np.cos(P)/m, R*np.sin(P)

58

59 z = np.zeros( len(r)*len(p))

60 Z = z.reshape( len(p), len(r) )

61

62 for i in range(len(r)):

63 for j in range(len(p)):

64 x = r[i]*np.cos(p[j])/m

65 y = r[i]*np.sin(p[j])

66 Z[j][i] = chaos(m, Vm, x, y, T, dt)[ -1][2]

67

68 # Plot the surface.

69 ax.plot_surface(X, Y, Z, cmap="plasma", linewidth =0, alpha =0.7)

70

71 ax.contourf(X, Y, Z, zdir=’z’, offset =0*Z.max(), cmap=’coolwarm

’)

72 ax.contourf(X, Y, Z, zdir=’x’, offset = -1.2*(hp *(3/(4* np.pi))

**0.5)/m, cmap=’coolwarm ’)

73 ax.contourf(X, Y, Z, zdir=’y’, offset= 1.2*(hp *(3/(4* np.pi))

**0.5) , cmap=’coolwarm ’)

74

75 ax.set_xlabel(’ p ’)

76 ax.set_ylabel(’ d /dtp’)

77 ax.set_zlabel(’e-folds of inflation ’)

78 ax.view_init(elev =20., azim=-35, roll =0)

79 plt.show()

80 return

81

82

83 def Graph_3d(m, Vs , xmin , xmax , dx, ymin , ymax , dy, T, dt):

84 """

85 ----------

86 m : constant associated with potential V

87 Vs : non -negative , sympy -defined function

88 xmin : minimum value of p to be tested

89 xmax : >xmin maximum value of p to be tested

90 dx : >0 increment between values

91 ymin : minimum value of d /dtp to be tested

92 ymax : >ymin maximum value of d /dtp to be tested

93 dy : >0 increment between d /dtp values

94 T : >1 Simulation end time , in tp

95 dt : >0 Timestep increment , in tp

96 ----------

97 Returns a 3-d plot of the e-fold number
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98 over the initial a rectangular region

99 in the input space [ p , d /dtp]

100 ----------

101 """

102 x = np.arange(xmin , xmax+dx , dx)

103 y = np.arange(ymin , ymax+dy , dy)

104

105 X, Y = np.meshgrid(x, y)

106

107 z = np.zeros( len(x)*len(y) )

108 Z = z.reshape( (len(x), len(y)) )

109

110

111 for i in range(len(x)):

112 for j in range(len(y)):

113 Z[j][i] = chaos(m, Vs, x[i], y[j], T, dt)[ -1][2]

114

115 fig = plt.figure ()

116 ax = plt.axes(projection=’3d’)

117 ax.plot_surface(X, Y, Z, cmap="plasma", linewidth =0, alpha =0.7)

118 ax.set_xlabel(’ (tp)’)

119 ax.set_ylabel(’ d /dtp’)

120 ax.set_zlabel(’e-folds of inflation ’)

121

122 ax.contourf(X, Y, Z, zdir=’z’, offset =1*Z.min(), cmap=’coolwarm

’)

123 ax.contourf(X, Y, Z, zdir=’x’, offset =-1.2*xmax , cmap=’coolwarm

’)

124 ax.contourf(X, Y, Z, zdir=’y’, offset= 1.2*ymax , cmap=’coolwarm

’)

125 plt.show()

126 return
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